Identifying Arguments of Space-Time Fractional Diffusion: Data-Driven Approach

被引:8
|
作者
Znaidi, Mohamed Ridha [1 ]
Gupta, Gaurav [1 ]
Asgari, Kamiar [1 ]
Bogdan, Paul [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
anomalous diffusion; fractional derivative; Fourier transform; Laplace transform; regression; PARTIAL-DIFFERENTIAL-EQUATIONS; ANOMALOUS DIFFUSION; RANDOM-WALKS; MODELS; DYNAMICS; RISK;
D O I
10.3389/fams.2020.00014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A plethora of complex dynamical systems from disordered media to biological systems exhibit mathematical characteristics (e.g., long-range dependence, self-similar and power law magnitude increments) that are well-fitted by fractional partial differential equations (PDEs). For instance, some biological systems displaying an anomalous diffusion behavior, which is characterized by a non-linear mean-square displacement relation, can be mathematically described by fractional PDEs. In general, the PDEs represent various physical laws or rules governing complex dynamical systems. Since prior knowledge about the mathematical equations describing complex dynamical systems in biology, healthcare, disaster mitigation, transportation, or environmental sciences may not be available, we aim to provide algorithmic strategies to discover the integer or fractional PDEs and their parameters from system's evolution data. Toward deciphering non-trivial mechanisms driving a complex system, we propose a data-driven approach that estimates the parameters of a fractional PDE model. We study the space-time fractional diffusion model that describes a complex stochastic process, where the magnitude and the time increments are stable processes. Starting from limited time-series data recorded while the system is evolving, we develop a fractional-order moments-based approach to determine the parameters of a generalized fractional PDE. We formulate two optimization problems to allow us to estimate the arguments of the fractional PDE. Employing extensive simulation studies, we show that the proposed approach is effective at retrieving the relevant parameters of the space-time fractional PDE. The presented mathematical approach can be further enhanced and generalized to include additional operators that may help to identify the dominant rule governing the measurements or to determine the degree to which multiple physical laws contribute to the observed dynamics.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [22] Adopting the margin of stability for space-time landslide prediction - A data-driven approach for generating spatial dynamic thresholds
    Steger, Stefan
    Moreno, Mateo
    Crespi, Alice
    Gariano, Stefano Luigi
    Brunetti, Maria Teresa
    Melillo, Massimo
    Peruccacci, Silvia
    Marra, Francesco
    de Vugt, Lotte
    Zieher, Thomas
    Rutzinger, Martin
    Mair, Volkmar
    Pittore, Massimiliano
    GEOSCIENCE FRONTIERS, 2024, 15 (05)
  • [23] NUMERICAL SIMULATIONS FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Ling, Leevan
    Yamamoto, Masahiro
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (02)
  • [24] Space-time pseudospectral method for the variable-order space-time fractional diffusion equation
    Gupta, Rupali
    Kumar, Sushil
    MATHEMATICAL SCIENCES, 2024, 18 (03) : 419 - 436
  • [25] From the space-time fractional integral of the continuous time random walk to the space-time fractional diffusion equations, a short proof and simulation
    Abdel-Rehim, E. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 531
  • [26] The Quasi-Boundary Value Method for Identifying the Initial Value of the Space-Time Fractional Diffusion Equation
    Fan Yang
    Yan Zhang
    Xiao Liu
    Xiaoxiao Li
    Acta Mathematica Scientia, 2020, 40 : 641 - 658
  • [27] The Quasi-Boundary Value Method for Identifying the Initial Value of the Space-Time Fractional Diffusion Equation
    Yang, Fan
    Zhang, Yan
    Liu, Xiao
    Li, Xiaoxiao
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) : 641 - 658
  • [28] THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    杨帆
    张燕
    刘霄
    李晓晓
    Acta Mathematica Scientia, 2020, 40 (03) : 641 - 658
  • [29] Data-driven approach for identifying spatiotemporally recurrent bottlenecks
    Song, Tai-Jin
    Williams, Billy M.
    Rouphail, Nagui M.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2018, 12 (08) : 756 - 764
  • [30] Space-time fractional diffusion equations in d-dimensions
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)