The Inductive Graph Dimension from the Minimum Edge Clique Cover

被引:0
|
作者
Betre, Kassahun [1 ]
Salinger, Evatt [2 ]
机构
[1] San Jose State Univ, 1 Washington Sq,Sci 148, San Jose, CA 95192 USA
[2] Pepperdine Univ, 24255 Pacific Coast Hwy, Malibu, CA 90263 USA
关键词
Inductive graph dimension; Join; Minimum clique cover; Pure graphs;
D O I
10.1007/s00373-021-02381-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: dim (G(1) + G(2)) = 1 + dim G(1) + dim G(2). We use this formula to derive an expression for the inductive dimension of an arbitrary finite simple graph from its minimum edge clique cover. A corollary of the formula is that any arbitrary finite simple graph whose maximal cliques are all of order N has dimension N = 1. We finish by finding lower and upper bounds on the inductive dimension of a simple graph in terms of its clique number.
引用
收藏
页码:2637 / 2654
页数:18
相关论文
共 50 条
  • [41] Hereditary graph classes: When the complexities of COLORING and CLIQUE COVER coincide
    Blanche, Alexandre
    Dabrowski, Konrad K.
    Johnson, Matthew
    Paulusma, Daniel
    JOURNAL OF GRAPH THEORY, 2019, 91 (03) : 267 - 289
  • [42] ON THE P-EDGE CLIQUE COVER NUMBER OF COMPLETE BIPARTITE GRAPHS
    JACOBSON, MS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (04) : 539 - 544
  • [43] Solving Edge Clique Cover Exactly via Synergistic Data Reduction
    Hevia, Anthony
    Kallus, Benjamin
    McClintic, Summer
    Reisner, Samantha
    Strash, Darren
    Wilson, Johnathan
    Leibniz International Proceedings in Informatics, LIPIcs, 2023, 274
  • [44] Approximating the minimum clique cover and other hard problems in subtree filament graphs
    Keil, J. Mark
    Stewart, Lorna
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (14) : 1983 - 1995
  • [45] The edge cover chromatic index of halin graph
    XU, Changqing
    Gao, Shue
    International Journal of Applied Mathematics and Statistics, 2013, 46 (16): : 381 - 384
  • [46] Edge Metric Dimension of Some Graph Operations
    Peterin, Iztok
    Yero, Ismael G.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2465 - 2477
  • [47] Edge Metric Dimension of Some Graph Operations
    Iztok Peterin
    Ismael G. Yero
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2465 - 2477
  • [48] EDGE METRIC DIMENSION OF k MULTIWHEEL GRAPH
    Bataineh, Mohammad S.
    Siddiqui, Nida
    Raza, Zahid
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1175 - 1180
  • [49] Edge metric dimension and mixed metric dimension of a plane graph Tn
    Shen, Huige
    Qu, Jing
    Kang, Na
    Lin, Cong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [50] Edge metric dimension and mixed metric dimension of planar graph Qn
    Qu, Jing
    Cao, Nanbin
    DISCRETE APPLIED MATHEMATICS, 2022, 320 : 462 - 475