Cubics defined from symmetric functions

被引:1
|
作者
Kimberling, Clark [1 ]
机构
[1] Univ Evansville, Dept Math, Evansville, IN 47722 USA
关键词
Brocard axis; cubic; homogeneous coordinates; symbolic substitution; symmetric functions; triangle center; trilinear coordinates; tripolar centroid; circumcircle; Euler line; Jerabek hyperbola; Moses circle;
D O I
10.1007/s00010-009-2977-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose a,b,c are algebraic indeterminates. Let X = x:y:z and U = u:v:w be homogeneous trilinear coordinates for points in the transfigured plane of a triangle ABC; that is, x,y,z,u,v,w are functions of a,b,c (which need not be sidelengths of a euclidean triangle). Cubic equations of the form f(x,y,z) = f(u,v,w), where f is of degree 3 and symmetric or antisymmetric in a,b,c, are discussed, typified by f(x,y,z) = (y+z)(z+x)(x+y)/(xyz). Extensions are made to the case that the coordinates for X and U are general homogeneous, with results stated in terms of trilinear coordinates.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条
  • [31] On distances derived from symmetric difference functions
    Aguilo, Isabel
    Calvo, Tomasa
    Martin, Javier
    Mayor, Gaspar
    Suner, Jaume
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 632 - 637
  • [32] Some Subordination Results Defined by Using the Symmetric q-Differential Operator for Multivalent Functions
    Noor, Saima
    Al-Sa'di, Sa'ud
    Hussain, Saqib
    AXIOMS, 2023, 12 (03)
  • [33] Comprehensive subclass of m-fold symmetric bi-univalent functions defined by subordination
    Bulut, Serap
    Salehian, Safa
    Motamednezhad, Ahmad
    AFRIKA MATEMATIKA, 2021, 32 (3-4) : 531 - 541
  • [34] Comprehensive subclass of m-fold symmetric bi-univalent functions defined by subordination
    Serap Bulut
    Safa Salehian
    Ahmad Motamednezhad
    Afrika Matematika, 2021, 32 : 531 - 541
  • [35] Subclass of k-Uniformly Starlike Functions Defined by the Symmetric q-Derivative Operator
    Kanas, S.
    Altinkaya, S.
    Yalcin, S.
    UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) : 1727 - 1740
  • [36] Subclass of k-Uniformly Starlike Functions Defined by the Symmetric q-Derivative Operator
    S. Kanas
    Ş. Altinkaya
    S. Yalçin
    Ukrainian Mathematical Journal, 2019, 70 : 1727 - 1740
  • [37] The extension of positive definite operator-valued functions defined on a symmetric interval of an ordered group
    Bakonyi, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) : 1401 - 1406
  • [38] Starlike Functions of Complex Order with Respect to Symmetric Points Defined Using Higher Order Derivatives
    Karthikeyan, Kadhavoor R.
    Lakshmi, Sakkarai
    Varadharajan, Seetharam
    Mohankumar, Dharmaraj
    Umadevi, Elangho
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [39] New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials
    Buyankara, Mucahit
    Caglar, Murat
    Cotirla, Luminita-Ioana
    AXIOMS, 2022, 11 (11)
  • [40] SYMMETRIC FUNCTIONS
    RUEHR, OG
    BIRD, MT
    BRUCKMAN, PS
    CARLITZ, L
    EVANS, R
    FOREGGER, T
    LAGARIAS, J
    LOSSERS, OP
    MATTICS, LE
    MURTY, R
    MURTY, K
    RASMUSSEN, CH
    RICHTER, B
    STENGER, A
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (07): : 764 - 764