MECHANICAL PROPERTIES OF CARBON NANOTUBE /EPOXY COMPOSITE LAMINATES PROCESSED USING PREPREG METHOD

被引:0
|
作者
Ogasawara, Toshio [1 ]
Hanamitsu, Satoru [2 ]
Ogawa, Takeshi [2 ]
Moon, Sook-Young [1 ]
Shimamura, Yoshinobu [3 ]
Inoue, Yoku [3 ]
机构
[1] Japan Aerosp Explorat Agcy JAXA, 6-13-1 Osawa, Mitaka, Tokyo 1810015, Japan
[2] Aoyama Gakuin Univ, Dept Mech Engn, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan
[3] Shizuoka Univ, Fac Engn, Naka Ku, Hamamatsu, Shizuoka 4238561, Japan
基金
日本科学技术振兴机构;
关键词
Carbon nanotube; Mechanical properties; Composites; Laminates; MICROSCOPIC DAMAGE; STRENGTH;
D O I
暂无
中图分类号
TB33 [复合材料];
学科分类号
摘要
This study examined the processing and mechanical properties of aligned MWCNT /epoxy lamina and laminates processed using a hot-melt prepreg method. On-axis and off-axis tensile tests (0 degrees, 45 degrees, 90 degrees) of aligned CNT/epoxy lamina specimens were carried out, and the elastic moduli, E-11, E-22, and G(12) were obtained. Fracture surfaces of lamina specimens after tensile testing were observed using a scanning electron microscope (SEM). As a result, pulled-out CNTs without epoxy adhesion were observed at the interface, which suggests the weak interfacial shear/tensile strengths at the interface between CNT and epoxy. CNT/epoxy laminates ([0 degrees/90 degrees]s, [60 degrees/0 degrees/-60 degrees]s, [0 degrees/45 degrees/90 degrees/-45 degrees]s) were successfully fabricated using aligned CNT/epoxy prepreg sheets. The CNT volume fraction was approximately 10%. No visible void and delamination were observed in composite laminates, and the thickness of each layer was almost the same as that of prepreg. The Young's modulus of CNT/epoxy laminates agreed with the theoretical values, which were calculated using classical laminate theory (CLT) and elastic moduli of CNT/epoxy lamina. The failure strain of [0 degrees/90 degrees] s, [60 degrees/0 degrees/-60 degrees]s, and [0 degrees/45 degrees/90 degrees/-45 degrees]s laminates is respectively 0.65%, 0.92%, 0.63%, which are higher than that of 0 degrees composite lamina (0.5%). The result suggests that the failure strain of 0 degrees layer in composite laminates is improved due to other layers.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers
    Zhou, Yuanxin
    Pervin, Farhana
    Jeelani, Shaik
    Mallick, P. K.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 198 (1-3) : 445 - 453
  • [42] TENSILE PROPERTIES OF CARBON NANOTUBE/EPOXY COMPOSITE FABRICATED BY PULTRUSION OF CARBON NANOTUBE SPUN YARN
    Shimamura, Yoshinobu
    Oshima, Kahori
    Tohgo, Keiichiro
    Fujii, Tomoyuki
    Inoue, Yoku
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [43] MECHANICAL PROPERTIES OF MULTIWALL CARBON NANOTUBE-EPOXY COMPOSITES
    Vajaiac, E.
    Palade, S.
    Pantazi, A.
    Stefan, A.
    Pelin, G.
    Baran, D.
    Ban, C.
    Purica, M.
    Meltzer, V.
    Pincu, E.
    Berbecaru, C.
    Dragoman, D.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2015, 10 (02) : 359 - 369
  • [44] Simulation on mechanical properties of carbon fiber reinforced epoxy laminates with voids
    Zhang, Aying
    Zhang, Dongxing
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2013, 34 (03): : 389 - 393
  • [45] EFFECT OF VOID CONTENT ON THE MECHANICAL-PROPERTIES OF CARBON EPOXY LAMINATES
    GHIORSE, SR
    SAMPE QUARTERLY-SOCIETY FOR THE ADVANCEMENT OF MATERIAL AND PROCESS ENGINEERING, 1993, 24 (02): : 54 - 59
  • [46] Electrical and Mechanical Properties of Carbon Nanotube-Epoxy Nanocomposites
    Thakre, Piyush R.
    Bisrat, Yordanos
    Lagoudas, Dimitris C.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 116 (01) : 191 - 202
  • [47] Mechanical properties of functionalized multiwalled carbon nanotube/epoxy nanocomposites
    Gantayat, Subhra
    Rout, Dibyaranjan
    Swain, Sarat K.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 4061 - 4064
  • [48] Effect of carbon nanotube on electrical, thermal and mechanical properties of epoxy
    Zhou, Yuanxin
    Cheng, Zhongyang
    Jeelani, Shaik
    Wu, Peixuan
    Dey, Biddut Kanti
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 13: PROCESSING AND ENGINEERING APPLICATIONS OF NOVEL MATERIALS, 2008, : 243 - 249
  • [49] Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties
    He, Yuxin
    Yang, Song
    Liu, Hu
    Shao, Qian
    Chen, Qiuyu
    Lu, Chang
    Jiang, Yuanli
    Liu, Chuntai
    Guo, Zhanhu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 517 : 40 - 51
  • [50] Molecular simulation of the interfacial properties of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid
    Zhang, Fu-Hua
    He, Xiao-Dong
    Dong, Li-Hua
    Yin, Yan-Sheng
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 1289 - +