Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos

被引:129
|
作者
Lu, Chi-Wei [1 ,2 ,3 ]
Yabuuchi, Akiko [1 ,2 ,3 ]
Chen, Lingyi [1 ,2 ,3 ]
Viswanathan, Srinivas [1 ,2 ,4 ]
Kim, Kitai [1 ,2 ,3 ]
Daley, George Q. [1 ,2 ]
机构
[1] Childrens Hosp, Div Pediat Hematol & Oncol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Harvard Univ, Stem Cell Inst, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1038/ng.173
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In blastocyst chimeras, embryonic stem (ES) cells contribute to embryonic tissues but not extraembryonic trophectoderm. Conditional activation of HRas1(Q61L) in ES cells in vitro induces the trophectoderm marker Cdx2 and enables derivation of trophoblast stem (TS) cell lines that, when injected into blastocysts, chimerize placental tissues. Erk2, the downstream effector of Ras-mitogen-activated protein kinase (MAPK) signaling, is asymmetrically expressed in the apical membranes of the 8-cell-stage embryo just before morula compaction. Inhibition of MAPK signaling in cultured mouse embryos compromises Cdx2 expression, delays blastocyst development and reduces trophectoderm outgrowth from embryo explants. These data show that ectopic Ras activation can divert ES cells toward extraembryonic trophoblastic fates and implicate Ras-MAPK signaling in promoting trophectoderm formation from mouse embryos.
引用
收藏
页码:921 / 926
页数:6
相关论文
共 50 条
  • [41] Embryos and embryonic stem cells from the white rhinoceros
    Hildebrandt, Thomas B.
    Hermes, Robert
    Colleoni, Silvia
    Diecke, Sebastian
    Holtze, Susanne
    Renfree, Marilyn B.
    Stejskal, Jan
    Hayashi, Katsuhiko
    Drukker, Micha
    Loi, Pasqualino
    Goeritz, Frank
    Lazzari, Giovanna
    Galli, Cesare
    NATURE COMMUNICATIONS, 2018, 9
  • [42] Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells
    Velkey, JM
    O'Shea, KS
    GENESIS, 2003, 37 (01) : 18 - 24
  • [43] Calcineurin-NFAT Signaling Critically Regulates Early Lineage Specification in Mouse Embryonic Stem Cells and Embryos
    Li, Xiang
    Zhu, Lili
    Yang, Acong
    Lin, Jiangwei
    Tang, Fan
    Jin, Shibo
    Wei, Zhe
    Li, Jinsong
    Jin, Ying
    CELL STEM CELL, 2011, 8 (01) : 46 - 58
  • [44] Effect of mesenchymal stem cells and mouse embryonic fibroblasts on the development of preimplantation mouse embryos
    Jasmin
    Peters, Vera Maria
    Spray, David C.
    Mendez-Otero, Rosalia
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2016, 52 (04) : 497 - 506
  • [45] Effect of mesenchymal stem cells and mouse embryonic fibroblasts on the development of preimplantation mouse embryos
    Vera Maria Jasmin
    David C. Peters
    Rosalia Spray
    In Vitro Cellular & Developmental Biology - Animal, 2016, 52 : 497 - 506
  • [46] Role of Wnt Signaling in Cardiac Differentiation From Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells
    Shigeno, Asako
    Sogo, Takahiro
    Takaya, Tomohide
    Kojima, Yoji
    Hasegawa, Koji
    Kawamura, Teruhisa
    CIRCULATION, 2010, 122 (02) : E30 - E30
  • [47] Signaling pathways regulating proliferation of mouse embryonic stem cells
    Chuykin I.A.
    Lianguzova M.S.
    Pospelov V.A.
    Cell and Tissue Biology, 2007, 1 (3) : 191 - 205
  • [48] Embryonic stem cells generated from haploid mouse embryos are prone to self-diploidization.
    Greda, P.
    Baraniewicz-Kolek, M.
    Winiarczyk, D.
    Duszewska, A.
    REPRODUCTION IN DOMESTIC ANIMALS, 2019, 54 : 147 - 147
  • [49] Overexpression of Nodal promotes differentiation of mouse embryonic stem cells into mesoderm and endoderm at the expense of neuroectoderm formation
    Pfendler, KC
    Catuar, CS
    Meneses, JJ
    Pedersen, RA
    STEM CELLS AND DEVELOPMENT, 2005, 14 (02) : 162 - 172
  • [50] In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells
    Jian Yang
    David J. Ryan
    Guocheng Lan
    Xiangang Zou
    Pentao Liu
    Nature Protocols, 2019, 14 : 350 - 378