Vacancies at the Cu-Nb semicoherent interface

被引:5
|
作者
Metsanurk, E. [1 ]
Tamm, A. [1 ,2 ]
Aabloo, A. [2 ]
Klintenberg, M. [1 ]
Caro, A. [3 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden
[2] Univ Tartu, Inst Technol, Intelligent Mat & Syst Lab, EE-50411 Tartu, Estonia
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
vacancies; migration barrier; semicoherent meta-metal interface; density functional theory calculations; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; METALS; MULTILAYERS; DEFECTS; HE;
D O I
10.1088/1361-651X/25/2/025012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the 0 K structures and formation energies for vacancy clusters of up to four vacancies and migration barriers for a single vacancy at a semicoherent Kurdjumov-Sachs Cu-Nb interface using ab initio calculations. Two main results emerge from this study, first that the predicted vacancy structure is compact, differing notoriously with predictions based on available empirical potentials, and second that vacancy clusters containing up to four vacancies have a smaller formation energy than monovacancy in bulk. Additionally, the binding energies show that the vacancy clusters are energetically stable for clusters having up to four vacancies. Nudged elastic band calculations of migration barriers show that the migration of a vacancy from one misfit dislocation intersection to another is highly improbable due to the high barriers. These findings suggest that at nonzero temperatures the interface will be preloaded with vacancy clusters with a relatively large capture radius for interstitials in the interface plane, implying that the semicoherent Cu-Nb interface could be a highly effective sink for point defects that form due to irradiation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Elasto-plastic properties of Cu-Nb nanolaminate
    Betekhtin, V. I.
    Kolobov, Yu. R.
    Kardashev, B. K.
    Golosov, E. V.
    Narykova, M. V.
    Kadomtsev, A. G.
    Klimenko, D. N.
    Karpov, M. I.
    TECHNICAL PHYSICS LETTERS, 2012, 38 (02) : 144 - 146
  • [42] Cold-deformed Cu-Ag and Cu-Nb composites
    Han, K
    Ishmaku, A
    Xin, Y
    Kalu, PN
    ULTRAFINE GRAINED MATERIALS III, 2004, : 273 - 278
  • [43] Size effect on texture of multiscale Cu in Cu-Nb nanocomposite wires
    Xiang, Shihua
    Yang, Xiaofang
    Wang, Lu
    Qiu, Youcai
    Li, Jingxiao
    Liang, Yanxiang
    MATERIALS CHARACTERIZATION, 2024, 218
  • [44] Pulsed Solenoid with Nanostructured Cu-Nb Wire Winding
    Bykov, A. A.
    Popkov, S. I.
    Parshin, A. M.
    Krasikov, A. A.
    JOURNAL OF SURFACE INVESTIGATION, 2015, 9 (01): : 111 - 115
  • [45] Deformation and failure of shocked bulk Cu-Nb nanolaminates
    Han, W. Z.
    Cerreta, E. K.
    Mara, N. A.
    Beyerlein, I. J.
    Carpenter, J. S.
    Zheng, S. J.
    Trujillo, C. P.
    Dickerson, P. O.
    Misra, A.
    ACTA MATERIALIA, 2014, 63 : 150 - 161
  • [46] MICROSTRUCTURAL ANALYSIS OF INSITU CU-NB COMPOSITE WIRES
    PELTON, AR
    LAABS, FC
    SPITZIG, WA
    CHENG, CC
    JOURNAL OF METALS, 1986, 38 (10): : 29 - 29
  • [47] Microstructure and texture evolution of Cu-Nb composite wires
    Deng, Liping
    Yang, Xiaofang
    Han, Ke
    Lu, Yafeng
    Liang, Ming
    Liu, Qing
    MATERIALS CHARACTERIZATION, 2013, 81 : 124 - 133
  • [48] Measurements of liquidus temperatures in the Cu-Nb and Cu-Cr systems
    Li, D
    Robinson, MB
    Rathz, TJ
    JOURNAL OF PHASE EQUILIBRIA, 2000, 21 (02): : 136 - 140
  • [49] Behavior of Vacancies and Interstitials at Semicoherent Interfaces
    Kolluri, Kedarnath
    Demkowicz, Michael J.
    Hoagland, Richard G.
    Liu, Xiang-Yang
    JOM, 2013, 65 (03) : 374 - 381
  • [50] Behavior of Vacancies and Interstitials at Semicoherent Interfaces
    Kedarnath Kolluri
    Michael J. Demkowicz
    Richard G. Hoagland
    Xiang-Yang Liu
    JOM, 2013, 65 : 374 - 381