The Cabibbo suppressed decays D --> Vl(+)l(-) (V is light vector meson) present in principle the opportunity to observe the short distance FCNC transition c-->ul(+)l(-), which is sensitive to physics beyond the standard model. We analyze these as well as the Cabibbo allowed D -->Vl(+)l(-) decays within the standard model, where in addition to the short distance dynamics also the long distance dynamics is present. The long distance contribution is induced by the effective nonleptonic weak Lagrangian accompanied by the emission of a virtual photon, which occurs resonantly via conversion from a vector meson rho(o), omega or phi or nonresonantly as direct emission from a D meson. We calculate the branching ratios for all D-->Vl(+)l(-) decays using the model, which combines heavy quark symmetry and chiral perturbation theory. The short distance contribution due to c -->ul(+)l(-) transition, which is present only in the Cabibbo suppressed decays, is found to be three orders of magnitude smaller than the long distance contribution. The branching ratios well above 10(-7) for Cabibbo suppressed decays could signal new physics. The most frequent decays are the Cabibbo allowed decays, which are expected at the rates, that are not much lower than the present experimental upper limit: D-s(+)-->rho(+)mu(+)mu(-) is expected at the branching ratio of approximately 3x10(-5), while D-o-->(K) over bar*(o)mu(+)mu(-) is expected at 1.7 x 10(-6) [S0556-2821(98)06121-9].