Detecting semantic concepts from video using temporal gradients and audio classification

被引:0
|
作者
Rautiainen, M
Seppänen, T
Penttilä, J
Peltola, J
机构
[1] Univ Oulu, MediaTeam Oulu, FIN-90014 Oulu, Finland
[2] VTT Tech Res Ctr Finland, FIN-90571 Oulu, Finland
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we describe new methods to detect semantic concepts from digital video based on audible and visual content. Temporal Gradient Correlogram captures temporal correlations of gradient edge directions from sampled shot frames. Power-related physical features are extracted from short audio samples in video shots. Video shots containing people, cityscape, landscape, speech or instrumental sound are detected with trained self-organized maps and kNN classification results of audio samples. Test runs and evaluations in TREC 2002 Video Track show consistent performance for Temporal Gradient Correlogram and state-of-the-art precision in audio-based instrumental sound detection.
引用
收藏
页码:260 / 270
页数:11
相关论文
共 50 条
  • [21] USING ASSOCIATION RULE MINING TO ENRICH SEMANTIC CONCEPTS FOR VIDEO RETRIEVAL
    Fatemi, Nastaran
    Poulin, Florian
    Raileanu, Laura E.
    Smeaton, Alan F.
    KDIR 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2009, : 119 - +
  • [22] Video Classification using Semantic Concept Co-occurrences
    Assari, Shayan Modiri
    Zamir, Amir Roshan
    Shah, Mubarak
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2529 - 2536
  • [23] Generating temporal semantic context of concepts using web search engines
    Xu, Zheng
    Liu, Yunhuai
    Mei, Lin
    Hu, Chuanping
    Chen, Lan
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2014, 43 : 42 - 55
  • [24] Temporal Learning of Semantic Relations between Concepts using Web Repository
    Xu, Zheng
    Xuan, Junyu
    2015 11TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2015, : 239 - 243
  • [25] Attention to clapping - A direct method for detecting sound source from video and audio
    Ikeda, T
    Ishiguro, IE
    Asada, M
    PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, 2003, : 264 - 268
  • [26] Detecting life events from twitter based on temporal semantic features
    Khodabakhsh, Maryam
    Kahani, Mohsen
    Bagheri, Ebrahim
    Noorian, Zeinab
    KNOWLEDGE-BASED SYSTEMS, 2018, 148 : 1 - 16
  • [27] Temporal video segmentation using unsupervised clustering and semantic object tracking
    Günsel, B
    Ferman, AM
    Tekalp, AM
    JOURNAL OF ELECTRONIC IMAGING, 1998, 7 (03) : 592 - 604
  • [28] Detecting video texts using spatial-temporal wavelet transform
    Wang, Yuan-Kai
    Chen, Jian-Ming
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 754 - +
  • [29] A semantic classification of images by predicting emotional concepts from visual features
    Tamil Priya, D.
    Divya Udayan, J.
    Test Engineering and Management, 2019, 81 (11-12): : 42 - 70
  • [30] Semantic video object tracking using region-based classification
    Gu, C
    Lee, MC
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3, 1998, : 643 - 647