Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion

被引:5
|
作者
Chen, Jiaqi [1 ]
Zhang, Pengfei [2 ,3 ]
Liu, Huafeng [4 ]
Xu, Lei [5 ]
Zhang, Heye [1 ]
机构
[1] Sun Yat Sen Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[2] Shandong Univ, Key Lab Cardiovasc Remodeling & Funct Res,Qilu Ho, Chinese Minist Educ,State & Shandong Prov Joint K, Chinese Natl Hlth Commiss,Dept Cardiol, Shanodng, Peoples R China
[3] Shandong Univ, Chinese Acad Med Sci, State & Shandong Prov Joint Key Lab Translat Card, Dept Cardiol,Qilu Hosp, Shanodng, Peoples R China
[4] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[5] Capital Med Univ, Beijing Anzhen Hosp, Dept Radiol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Myocardial perfusion; Spatiotemporal representation; Multitask network cascade; CORONARY-ARTERY-DISEASE; MYOCARDIAL-PERFUSION; QUANTITATIVE ASSESSMENT; DIAGNOSTIC-ACCURACY; MEDICAL THERAPY; PREDICTION; MRI; QUANTIFICATION; ISCHEMIA; LESION;
D O I
10.1016/j.media.2021.102207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate STMNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A multi-task spatio-temporal fully convolutional model incorporating interaction patterns for traffic flow prediction
    Qianqian, Zhou
    Tu, Ping
    Chen, Nan
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2025, 39 (01) : 142 - 180
  • [32] Spatio-Temporal Cellular Network Traffic Prediction Using Multi-Task Deep Learning for AI-Enabled 6G
    Xiaochuan Sun
    Biao Wei
    Jiahui Gao
    Difei Cao
    Zhigang Li
    Yingqi Li
    Journal of Beijing Institute of Technology, 2022, 31 (05) : 441 - 453
  • [33] Spatio-Temporal Cellular Network Traffic Prediction Using Multi-Task Deep Learning for AI-Enabled 6G
    Sun, Xiaochuan
    Wei, Biao
    Gao, Jiahui
    Cao, Difei
    Li, Zhigang
    Li, Yingqi
    Journal of Beijing Institute of Technology (English Edition), 2022, 31 (05): : 441 - 453
  • [34] Dense and Accurate Spatio-temporal Multi-view Stereovision
    Courchay, Jerome
    Pons, Jean-Philippe
    Monasse, Pascal
    Keriven, Renaud
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 11 - +
  • [35] Robust particle tracking via spatio-temporal context learning and multi-task joint local sparse representation
    Xue, Xizhe
    Li, Ying
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (15) : 21187 - 21204
  • [36] A Novel Spatio-Temporal Multi-Task Approach for the Prediction of Diabetes-Related Complication: a Cardiopathy Case of Study
    Romeo, Luca
    Armentano, Giuseppe
    Nicolucci, Antonio
    Vespasiani, Marco
    Vespasiani, Giacomo
    Frontoni, Emanuele
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 4299 - 4305
  • [37] SPATIO-TEMPORAL DECONVOLUTION OF PERFUSION CT DATA IN RECTAL TUMOR PATIENTS
    He, L.
    Orten, B. B.
    Do, S.
    Karl, W. C.
    Kambadakone, A.
    Sahani, D. V.
    Pien, H.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1231 - +
  • [38] Robust particle tracking via spatio-temporal context learning and multi-task joint local sparse representation
    Xizhe Xue
    Ying Li
    Multimedia Tools and Applications, 2019, 78 : 21187 - 21204
  • [39] Deep Spatio-temporal Network for Accurate Person Re-identification
    Quan Nguyen Hong
    Nghia Nguyen Tuan
    Trung Tran Quang
    Dung Nguyen Tien
    Cuong Vo Le
    2017 PROCEEDINGS OF KICS-IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATIONS WITH SAMSUNG LTE & 5G SPECIAL WORKSHOP, 2017, : 208 - 213
  • [40] Spatio-Temporal ECG Network for Detecting Cardiac Disorders from Multi-Lead ECGs
    Chen, Long
    Jiang, Zheheng
    Almeida, Tiago P.
    Schlindwein, Fernando S.
    Shoker, Jakevir S.
    Ng, G. Andre
    Zhou, Huiyu
    Li, Xin
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,