Anti-aliasing by interpolation in pre-stack wave-equation migration

被引:4
|
作者
Fang, WB
Yan, JW
Sun, JG
Guan, LP
机构
[1] Nanjing Univ Sci & Technol, Nanjing 210094, Peoples R China
[2] China Univ Geosci, Sch Resource, Wuhan 430074, Peoples R China
[3] Nanjing Inst Geophys Prospecting, Nanjing 210014, Peoples R China
关键词
anti-aliasing; interpolation; imaging condition; Born approximation; wavefield continuation;
D O I
10.1088/1742-2132/1/2/008
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spatial aliasing is an important issue in seismic migration. In this paper, we discuss anti-aliasing schemes in the wavefield continuation which is a wave-equation-based migration method. We describe the difference in interpolation applied pre and post the imaging condition, and compare the effectiveness of the linear interpolation and the sinc function interpolation. Our conclusion is that a five-sample sinc function interpolation applied before the imaging condition is an optimal anti-aliasing scheme according to theoretical and application analysis. We then apply the 3D Born approximation pre-stack depth migration method with optimal anti-aliasing interpolation to a 80 km(2) seismic dataset. The migration result shows that the method we propose is better than a conventional wave equation method ( not applied anti-spatial aliasing) in the definition of reflection events.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 50 条
  • [31] Angle domain pre-stack migration imaging studies and application
    Liu, Wen-Qing
    Wang, Xi-Wen
    Wang, Yu-Chao
    Shao, Xi-Chun
    Hu, Zi-Duo
    Kou, Long-Jiang
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2010, 45 (SUPPL. 1): : 62 - 65
  • [32] SEISMIC INVERSION IN TERMS OF PRE-STACK MIGRATION AND MULTIPLE ELIMINATION
    BERKHOUT, AJ
    PROCEEDINGS OF THE IEEE, 1986, 74 (03) : 415 - 427
  • [33] Imaging with pre-stack migration based on Sp scattering kernels
    Hua, Junlin
    Fischer, Karen M.
    Mancinelli, Nicholas J.
    Bao, Tiezhao
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 220 (01) : 428 - 449
  • [34] Wave-field upward continuation pre-stack depth migration based on irregular topography
    Tian, Wen-Hui
    Li, Zhen-Chun
    Zhang, Hui
    Sun, Xiao-Dong
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2006, 30 (05): : 19 - 22
  • [35] LINEARIZED INVERSION - A SIGNIFICANT STEP BEYOND PRE-STACK MIGRATION
    BOURGEOIS, A
    JIANG, BF
    LAILLY, P
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1989, 99 (02) : 435 - 445
  • [36] Accelerating Pre-stack Kirchhoff Time Migration by Manual Vectorization
    Alves, Maicon Melo
    Pestana, Reynam da Cruz
    Prado da Silva, Rodrigo Alves
    Drummond, Lucia M. A.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (22):
  • [37] COLLOCATION FORMULATION OF WAVE-EQUATION MIGRATION
    PANN, K
    SHIN, Y
    EISNER, E
    GEOPHYSICS, 1979, 44 (04) : 712 - 721
  • [38] WAVE-EQUATION MIGRATION - 2 APPROACHES
    LARNER, K
    HATTON, L
    AAPG BULLETIN-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS, 1976, 60 (12): : 2184 - 2184
  • [39] Seismic wave-equation demigration/migration
    Chauris, Herve
    Benjemaa, Mondher
    GEOPHYSICS, 2010, 75 (03) : S111 - S119
  • [40] INTERPRETATIONAL BENEFITS OF WAVE-EQUATION MIGRATION
    KOEHLER, F
    REILLY, MD
    GEOPHYSICS, 1977, 42 (01) : 162 - 162