Performance difference of graph-based and alignment-based hybrid error correction methods for error-prone long reads

被引:6
|
作者
Wang, Anqi [1 ,2 ]
Au, Kin Fai [1 ,2 ,3 ]
机构
[1] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Univ Iowa, Dept Internal Med, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
SINGLE-MOLECULE; NANOPORE; GENOME; ACCURACY;
D O I
10.1186/s13059-019-1885-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The error-prone third-generation sequencing (TGS) long reads can be corrected by the high-quality second-generation sequencing (SGS) short reads, which is referred to as hybrid error correction. We here investigate the influences of the principal algorithmic factors of two major types of hybrid error correction methods by mathematical modeling and analysis on both simulated and real data. Our study reveals the distribution of accuracy gain with respect to the original long read error rate. We also demonstrate that the original error rate of 19% is the limit for perfect correction, beyond which long reads are too error-prone to be corrected by these methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Performance difference of graph-based and alignment-based hybrid error correction methods for error-prone long reads
    Anqi Wang
    Kin Fai Au
    Genome Biology, 21
  • [2] A comparative evaluation of hybrid error correction methods for error-prone long reads
    Fu, Shuhua
    Wang, Anqi
    Au, Kin Fai
    GENOME BIOLOGY, 2019, 20 (1)
  • [3] A comparative evaluation of hybrid error correction methods for error-prone long reads
    Shuhua Fu
    Anqi Wang
    Kin Fai Au
    Genome Biology, 20
  • [4] Assembly of Long Error-Prone Reads Using Repeat Graphs
    Kolmogorov, Mikhail
    Yuan, Jeffrey
    Lin, Yu
    Pevzner, Pavel
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2018, 2018, 10812 : 261 - 262
  • [5] Assembly of long, error-prone reads using repeat graphs
    Mikhail Kolmogorov
    Jeffrey Yuan
    Yu Lin
    Pavel A. Pevzner
    Nature Biotechnology, 2019, 37 : 540 - 546
  • [6] Assembly of long, error-prone reads using repeat graphs
    Kolmogorov, Mikhail
    Yuan, Jeffrey
    Lin, Yu
    Pevzner, Pavel A.
    NATURE BIOTECHNOLOGY, 2019, 37 (05) : 540 - +
  • [7] Assembly of long error-prone reads using de Bruijn graphs
    Lin, Yu
    Yuan, Jeffrey
    Kolmogorov, Mikhail
    Shen, Max W.
    Chaisson, Mark
    Pevzner, Pavel A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (52) : E8396 - E8405
  • [8] Heading error in an Alignment-Based Magnetometer
    Hovde, Chris
    Patton, Brian
    Versolato, Oscar
    Corsini, Eric
    Rochester, Simon
    Budker, Dmitry
    UNATTENDED GROUND, SEA, AND AIR SENSOR TECHNOLOGIES AND APPLICATIONS XIII, 2011, 8046
  • [9] HAT: haplotype assembly tool using short and error-prone long reads
    Zade, Ramin Shirali Hossein
    Urhan, Aysun
    de Souza, Alvaro Assis
    Singh, Akash
    Abeel, Thomas
    BIOINFORMATICS, 2022, 38 (24) : 5352 - 5359
  • [10] SparkEC: speeding up alignment-based DNA error correction tools
    Roberto R. Expósito
    Marco Martínez-Sánchez
    Juan Touriño
    BMC Bioinformatics, 23