Multiplicity of positive periodic solutions to superlinear repulsive singular equations

被引:158
|
作者
Jiang, DQ [1 ]
Chu, JF
Zhang, M
机构
[1] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
multiplicity; superlinear; repulsive singular equation; periodic solution;
D O I
10.1016/j.jde.2004.10.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study positive periodic solutions to the repulsive singular perturbations of the Hill equations. It is proved that such a perturbation problem has at least two positive periodic solutions when the anti-maximum principle holds for the Hill operator and the perturbation is superlinear at infinity. The proof relies on a nonlinear alternative of Leray-Schauder type and on Krasnoselskii fixed point theorem on compression and expansion of cones. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 302
页数:21
相关论文
共 50 条