Crack initiation in metallic glasses under nanoindentation

被引:39
|
作者
Yang, Yongjian [1 ,2 ]
Luo, Jian [1 ]
Huang, Liping [1 ,2 ]
Hu, Guangli [1 ]
Vargheese, K. Deenamma [1 ]
Shi, Yunfeng [1 ,2 ]
Mauro, John C. [1 ]
机构
[1] Corning Inc, Div Sci & Technol, Corning, NY 14831 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
Nanoindentation; Metallic glass; Crack initiation; Cavitation; Molecular simulation; ELASTIC-PLASTIC INDENTATION; VICKERS INDENTATION; BRITTLE MATERIALS; SHEAR BANDS; SIMULATED NANOINDENTATION; STRUCTURAL TRANSFORMATION; CYLINDRICAL INDENTATION; DEFORMATION MORPHOLOGY; MOLECULAR-DYNAMICS; STRESS-FIELDS;
D O I
10.1016/j.actamat.2016.06.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulated nanoindentation tests on a model metallic glass reveal that the crack initiates inside a shear band via cavitation. The load-displacement curve was shown to be insensitive to the crack initiation but sensitive to subsequent crack propagation. The critical conditions for crack initiation were identified at both the macroscopic and microscopic levels. At the macroscopic level, the indenter geometry affects the overall critical load for crack initiation. Interestingly, the indentation volume at crack initiation appears to be a constant for different indenter geometries, based on which an analytical formula of the critical load as a function of the indenter geometry was derived. At the microscopic level, cavitation occurs once the normal stress perpendicular to the shear band exceeds a temperature-dependent critical cavitation stress. This critical cavitation stress was shown to reduce significantly upon shear deformation. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 422
页数:10
相关论文
共 50 条
  • [1] Nanoindentation of metallic glasses
    Burgess, Tim
    Ferry, M.
    MATERIALS TODAY, 2009, 12 (1-2) : 24 - 32
  • [2] On the fracture toughness of bulk metallic glasses under Berkovich nanoindentation
    Guo, H.
    Jiang, C. B.
    Yang, B. J.
    Wang, J. Q.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2018, 481 : 321 - 328
  • [3] Assessing plastic shear resistance of bulk metallic glasses under nanoindentation
    Wang, L.
    Song, S. X.
    Nieh, T. G.
    APPLIED PHYSICS LETTERS, 2008, 92 (10)
  • [4] Correlation between hardness and shear banding of metallic glasses under nanoindentation
    Li, Fucheng
    Song, Min
    Ni, Song
    Guo, Shengfeng
    Liao, Xiaozhou
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 657 : 38 - 42
  • [5] Deformation behavior of Al-rich metallic glasses under nanoindentation
    Guo, Hui
    Jiang, Chuanbin
    Yang, Baijun
    Wang, Jianqiang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (11) : 1272 - 1277
  • [6] Deformation behavior of Al-rich metallic glasses under nanoindentation
    Hui Guo
    Chuanbin Jiang
    Baijun Yang
    Jianqiang Wang
    Journal of Materials Science & Technology, 2017, 33 (11) : 1272 - 1277
  • [7] Nanoindentation study of chemical effects on the activation volume controlling shear band initiation in metallic glasses
    Perriere, Loic
    Nowak, Sophie
    Brossard, Sophie
    Minh-Thanh Thai
    Bletry, Marc
    Champion, Yannick
    SCRIPTA MATERIALIA, 2013, 68 (3-4) : 183 - 186
  • [8] Plastic deformation of Zr-based bulk metallic glasses under nanoindentation
    Liu, L
    Chan, KC
    MATERIALS LETTERS, 2005, 59 (24-25) : 3090 - 3094
  • [9] Nanoindentation study of Ti-based metallic glasses
    Huang, Yongjiang
    Chiu, Yu Lung
    Shen, Jun
    Chen, John J. J.
    Sun, Jianfei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 479 (1-2) : 121 - 128
  • [10] A nanoindentation study of serrated flow in bulk metallic glasses
    Schuh, CA
    Nieh, TG
    ACTA MATERIALIA, 2003, 51 (01) : 87 - 99