Evolving multi-label fuzzy classifier with advanced robustness respecting human uncertainty

被引:6
|
作者
Lughofer, Edwin [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Math Methods Med & Databased Modeling, Linz, Austria
基金
奥地利科学基金会;
关键词
Multi-label stream classification; Evolving multi-label fuzzy classifier; Incremental correlation-based learning; Incremental feature weighting for; advanced robustness; Human uncertainty in class labels; RULE-BASED CLASSIFIERS; FEATURE-SELECTION; ALGORITHM; IDENTIFICATION; PARAMETERS; SYSTEMS; MODEL;
D O I
10.1016/j.knosys.2022.109717
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification has attracted much attention in the machine learning community to address the problem of assigning single samples to more than one class at the same time. We propose an evolving multi-label fuzzy classifier (EFC-ML-FWU) which is able to self-adapt and self-evolve its structure and consequent parameters in the form of multiple hyper-planes with new incoming multi -label samples in an incremental, single-pass manner and which especially addresses the intrinsic curse of dimensionality as well as human label uncertainty problems, often apparent in multi-label classification problems, to ensure the advanced robustness of the learned structure and parameters. The former is achieved by integrating feature weights into the learning process, specifically designed for online multi-label classification problems in an incremental manner, measuring the impact of features with respect to their discriminatory power. The features are integrated (i) into the rule evolution criterion, leading to a shrinkage of distances along unimportant dimensions, which reduces the likelihood of unnecessary rule evolution and thus decreases over-fitting due to the curse of dimensionality, (ii) into the first consequent learning part by a variable-regularized RFWLS approach realized through an incremental coordinate descent algorithm, and (iii) into the second consequent learning part employing correlation-based preservation learning by using weight-based thresholds (extending the classical Lipschitz constant-based threshold) within soft shrinkage operations to optimize a feature-based weighted L1-norm on the consequent parameters. Uncertainty in class labels is handled by an integration of sample weights, where lower weights indicate a higher uncertainty in the labels carried by a sample. This leads to (i) a weighted updating of the incremental feature weights, (ii) a weighted update of the rule antecedent space through a weighted incremental clustering process, and (iii) a specific weighted update of the consequent parameters exploring a single-label and a multi -label view of uncertainty. Our approach was evaluated on several data sets from the MULAN repository and showed significantly improved classification accuracy and average precision trend lines compared to alternative (evolving) one-versus-rest or classifier chaining concepts, and especially improved the native EFC-ML method without feature weights and uncertainty handling with performance gains up to 17% in the AUC of the accuracy trends. Furthermore, interesting insights into an improved robustness of the multi-label classifier (i) in the case of wrong labels due to low user experience levels and (ii) in the case of low label certainties but potentially correct labels were obtained.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Efficient label ordering for improving multi-label classifier chain accuracy
    Ali, Tariq
    Asghar, Sohail
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2019, 47 (02): : 175 - 184
  • [22] A Genetic Algorithm for Optimizing the Label Ordering in Multi-Label Classifier Chains
    Goncalves, Eduardo Correa
    Plastino, Alexandre
    Freitas, Alex A.
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 469 - 476
  • [23] SciNoBo: A Hierarchical Multi-Label Classifier of Scientific Publications
    Gialitsis, Nikolaos
    Kotitsas, Sotiris
    Papageorgiou, Haris
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 800 - 809
  • [24] Speeding Up Classifier Chains in Multi-label Classification
    Moyano, Jose M.
    Gibaja, Eva L.
    Ventura, Sebastian
    Cano, Alberto
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS 2019), 2019, : 29 - 37
  • [25] GROUP SENSITIVE CLASSIFIER CHAINS FOR MULTI-LABEL CLASSIFICATION
    Huang, Jun
    Li, Guorong
    Wang, Shuhui
    Zhang, Weigang
    Huang, Qingming
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2015,
  • [26] Multi-label Classifier for Emotion Recognition from Music
    Tomar, Divya
    Agarwal, Sonali
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS (ICACNI 2015), VOL 1, 2016, 43 : 111 - 123
  • [27] Classifier chains for positive unlabelled multi-label learning
    Teisseyre, Pawel
    KNOWLEDGE-BASED SYSTEMS, 2021, 213
  • [28] Robustness Verification of Multi-label Neural Network Classifiers
    Mour, Julian
    Drachsler-Cohen, Dana
    STATIC ANALYSIS, SAS 2024, 2025, 14995 : 327 - 351
  • [29] Data scarcity, robustness and extreme multi-label classification
    Rohit Babbar
    Bernhard Schölkopf
    Machine Learning, 2019, 108 : 1329 - 1351
  • [30] Data scarcity, robustness and extreme multi-label classification
    Babbar, Rohit
    Schoelkopf, Bernhard
    MACHINE LEARNING, 2019, 108 (8-9) : 1329 - 1351