Unsupervised Test-Time Adaptation of Deep Neural Networks at the Edge: A Case Study

被引:0
|
作者
Bhardwaj, Kshitij [1 ]
Diffenderfer, James [1 ]
Kailkhura, Bhavya [1 ]
Gokhale, Maya [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Robust deep learning; on-device neural network adaptation; unsupervised adaptation; edge devices;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning is being increasingly used in mobile and edge autonomous systems. The prediction accuracy of deep neural networks (DNNs), however, can degrade after deployment due to encountering data samples whose distributions are different than the training samples. To continue to robustly predict, DNNs must be able to adapt themselves post-deployment. Such adaptation at the edge is challenging as new labeled data may not be available, and it has to be performed on a resource-constrained device. This paper performs a case study to evaluate the cost of test-time fully unsupervised adaptation strategies on a real-world edge platform: Nvidia Jetson Xavier NX. In particular, we adapt pretrained state-of-the-art robust DNNs (trained using data augmentation) to improve the accuracy on image classification data that contains various image corruptions. During this prediction-time on-device adaptation, the model parameters of a DNN are updated using a single backpropagation pass while optimizing entropy loss. The effects of following three simple model updates are compared in terms of accuracy, adaptation time and energy: updating only convolutional (Conv-Tune); only fully-connected (FC-Tune); and only batch-norm parameters (BN-Tune). Our study shows that BN-Tune and Conv-Tune are more effective than FC-Tune in terms of improving accuracy for corrupted images data (average of 6.6%, 4.97%, and 4.02%, respectively over no adaptation). However, FC-Tune leads to significantly faster and more energy efficient solution with a small loss in accuracy. Even when using FC-Tune, the extra overheads of on-device fine-tuning are significant to meet tight real-time deadlines (209ms). This study motivates the need for designing hardware-aware robust algorithms for efficient ondevice adaptation at the autonomous edge.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 50 条
  • [31] Prototypical class-wise test-time adaptation
    Lee, Hojoon
    Lee, Seunghwan
    Jung, Inyoung
    Korea, Sungeun Hong
    PATTERN RECOGNITION LETTERS, 2025, 187 : 49 - 55
  • [32] Efficient Test-Time Model Adaptation without Forgetting
    Niu, Shuaicheng
    Wu, Jiaxiang
    Zhang, Yifan
    Chen, Yaofo
    Zheng, Shijian
    Zhao, Peilin
    Tan, Mingkui
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [33] Unraveling Batch Normalization for Realistic Test-Time Adaptation
    Su, Zixian
    Guo, Jingwei
    Yao, Kai
    Yang, Xi
    Wang, Qiufeng
    Huang, Kaizhu
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 15136 - 15144
  • [34] Test-time Domain Adaptation for Monocular Depth Estimation
    Li, Zhi
    Sh, Shaoshuai
    Schiele, Bernt
    Dai, Dengxin
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4873 - 4879
  • [35] VPA: Fully Test-Time Visual Prompt Adaptation
    Sun, Jiachen
    Ibrahim, Mark
    Hall, Melissa
    Evtimov, Ivan
    Mao, Z. Morley
    Ferrer, Cristian Canton
    Hazirbas, Caner
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5796 - 5806
  • [36] Exploring Motion Cues for Video Test-Time Adaptation
    Zeng, Runhao
    Deng, Qi
    Xu, Huixuan
    Niu, Shuaicheng
    Chen, Jian
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1840 - 1850
  • [37] Test-Time Adaptation with Shape Moments for Image Segmentation
    Bateson, Mathilde
    Lombaert, Herve
    Ben Ayed, Ismail
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT IV, 2022, 13434 : 736 - 745
  • [38] Multi-source fully test-time adaptation
    Du, Yuntao
    Luo, Siqi
    Xin, Yi
    Chen, Mingcai
    Feng, Shuai
    Zhang, Mujie
    Wang, Chonngjun
    NEURAL NETWORKS, 2025, 181
  • [39] UNSUPERVISED ADAPTATION FOR DEEP NEURAL NETWORKS USING ALTERNATING DIRECTION METHOD OF MULTIPLIERS
    Hsiao, Roger
    Ng, Tim
    Siu, Man-Hung
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 5180 - 5184
  • [40] MedBN: Robust Test-Time Adaptation against Malicious Test Samples
    Park, Hyejin
    Hwang, Jeongyeon
    Mun, Sunung
    Park, Sangdon
    Ok, Jungseul
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 5997 - 6007