doubletD: detecting doublets in single-cell DNA sequencing data

被引:11
|
作者
Weber, Leah L. [1 ]
Sashittal, Palash [1 ,2 ]
El-Kebir, Mohammed [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbama, IL 61801 USA
[2] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
INFERENCE;
D O I
10.1093/bioinformatics/btab266
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: While single-cell DNA sequencing (scDNA-seq) has enabled the study of intratumor heterogeneity at an unprecedented resolution, current technologies are error-prone and often result in doublets where two or more cells are mistaken for a single cell. Not only do doublets confound downstream analyses, but the increase in doublet rate is also a major bottleneck preventing higher throughput with current single-cell technologies. Although doublet detection and removal are standard practice in scRNA-seq data analysis, options for scDNA-seq data are limited. Current methods attempt to detect doublets while also performing complex downstream analyses tasks, leading to decreased efficiency and/or performance. Results: We present doubletD, the first standalone method for detecting doublets in scDNA-seq data. Underlying our method is a simple maximum likelihood approach with a closed-form solution. We demonstrate the performance of doubletD on simulated data as well as real datasets, outperforming current methods for downstream analysis of scDNA-seq data that jointly infer doublets as well as standalone approaches for doublet detection in scRNA-seq data. Incorporating doubletD in scDNA-seq analysis pipelines will reduce complexity and lead to more accurate results. Availability and implementation: https://github.com/elkebir-group/doubletD. Contact: melkebir@illinois.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:I214 / I221
页数:8
相关论文
共 50 条
  • [31] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252
  • [32] Splatter: simulation of single-cell RNA sequencing data
    Zappia, Luke
    Phipson, Belinda
    Oshlack, Alicia
    GENOME BIOLOGY, 2017, 18
  • [33] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [34] Editorial: Methods for Single-Cell and Microbiome Sequencing Data
    Mallick, Himel
    An, Lingling
    Chen, Mengjie
    Wang, Pei
    Zhao, Ni
    FRONTIERS IN GENETICS, 2022, 13
  • [35] Opportunities for Single-Cell Sequencing Technologies and Data Science
    Mustachio, Lisa Maria
    Roszik, Jason
    CANCERS, 2020, 12 (11)
  • [36] BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
    Vallejos, Catalina A.
    Marioni, John C.
    Richardson, Sylvia
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)
  • [37] Analyzing single-cell bisulfite sequencing data with MethSCAn
    Kremer, Lukas P. M.
    Braun, Martina M.
    Ovchinnikova, Svetlana
    Kuechenhoff, Leonie
    Cerrizuela, Santiago
    Martin-Villalba, Ana
    Anders, Simon
    NATURE METHODS, 2024, 21 (09) : 1616 - 1623
  • [38] Protocol for analysis of single-cell sequencing data by Seqtometry
    Kousnetsov, Robert
    Hawiger, Daniel
    STAR PROTOCOLS, 2024, 5 (03):
  • [39] Splatter: simulation of single-cell RNA sequencing data
    Luke Zappia
    Belinda Phipson
    Alicia Oshlack
    Genome Biology, 18
  • [40] A Model for Detecting Type 2 Diabetes Using Mixed Single-Cell RNA Sequencing with Optimized Data
    Padmaja K.
    Mukhopadhyay D.
    SN Computer Science, 4 (6)