Laser-driven acceleration of a dense matter up to 'thermonuclear' velocities

被引:10
|
作者
Gus'kov, S. Yu [1 ]
Azechi, H.
Demchenko, N. N.
Demchenko, V. V.
Doskoch, I. Ya
Murakami, M.
Nagatomo, H.
Rozanov, V. B.
Sakaiya, S.
Stepanov, R. V.
Zmitrenko, N. V.
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia
[2] Osaka Univ, Inst Laser Engn, Osaka, Japan
[3] Moscow Inst Phys & Technol, Moscow, Russia
[4] Russian Acad Sci, Inst Math Modeling, Moscow, Russia
关键词
D O I
10.1088/0741-3335/49/10/007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The results of theoretical studies and numerical simulations of laser-driven acceleration of a flat foil up to ultrahigh velocity of the order of 1000 km s(-1), which corresponds to the achievement of thermonuclear temperatures due to kinetic energy transition into thermal energy at an inelastic impact, are reported. The behavior of a foil accelerated to such high velocities, in particular, the distribution of foil density, which defines thermonuclear reaction intensity, has been studied. The calculation results are compared with the results of the experiments performed on the Gekko/HIPER laser, where a laser-driven projectile achieved record-breaking velocity. The laser pulse and foil parameters responsible for acceleration of the projectile up to 'thermonuclear' velocities in a dense state have been determined.
引用
收藏
页码:1689 / 1706
页数:18
相关论文
共 50 条
  • [41] ELECTRON ACCELERATION USING LASER-DRIVEN PHOTOCONDUCTIVE SWITCHING
    BAMBER, C
    DONALDSON, W
    LINCKE, E
    MELISSINOS, AC
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 327 (2-3): : 227 - 252
  • [42] Observation of the Quantum Nature of Laser-Driven Particle Acceleration
    Adiv, Yuval
    Wang, Kangpeng
    Dahan, Raphael
    Broaddus, Payton
    Miao, Yu
    Black, Dylan
    Leedle, Kenneth
    Solgaard, Olav
    England, Joel
    Kaminer, Ido
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [43] Laser-driven electron acceleration in an inhomogeneous plasma channel
    Zhang, Rong
    Cheng, Li-Hong
    Xue, Ju-Kui
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [44] Influence of the ablation threshold fluence on laser-driven acceleration
    Margarone, D.
    Velyhan, A.
    Torrisi, L.
    Cutroneo, M.
    Giuffrida, L.
    Picciotto, A.
    Krasa, J.
    Cavallaro, S.
    Limpouch, J.
    Klimo, O.
    Psikal, J.
    Proska, J.
    Novotny, F.
    APPLIED SURFACE SCIENCE, 2013, 272 : 132 - 137
  • [45] The impact of contaminants on laser-driven light ion acceleration
    Petrov, G. M.
    Willingale, L.
    Davis, J.
    Petrova, Tz.
    Maksimchuk, A.
    Krushelnick, K.
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [46] Novel Spectrometer Designs for Laser-Driven Ion Acceleration
    Morabito, Antonia
    Nelissen, Kwinten
    Migliorati, Mauro
    Ter-Avetisyan, Sargis
    PHOTONICS, 2024, 11 (07)
  • [47] Laser-driven ion acceleration: methods, challenges and prospects
    Badziak, J.
    INTERNATIONAL CONFERENCES ON RESEARCH AND APPLICATIONS OF PLASMAS (PLASMA-2017), 2018, 959
  • [48] Role of resistivity gradient in laser-driven ion acceleration
    Gizzi, L. A.
    Betti, S.
    Foerster, E.
    Giulietti, D.
    Hoefer, S.
    Koester, P.
    Labate, L.
    Loetzsch, R.
    Robinson, A. P. L.
    Uschmann, I.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2011, 14 (01):
  • [49] Bubble regime for ion acceleration in a laser-driven plasma
    Shen, Baifei
    Li, Yuelin
    Yu, M. Y.
    Cary, John
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [50] Few-Cycle Laser-Driven Electron Acceleration
    Schmid, K.
    Veisz, L.
    Tavella, F.
    Benavides, S.
    Tautz, R.
    Herrmann, D.
    Buck, A.
    Hidding, B.
    Marcinkevicius, A.
    Schramm, U.
    Geissler, M.
    Meyer-ter-Vehn, J.
    Habs, D.
    Krausz, F.
    PHYSICAL REVIEW LETTERS, 2009, 102 (12)