Nanoparticle formation of deposited Agn-clusters on free-standing graphene

被引:9
|
作者
Al-Hada, M. [1 ,2 ]
Peters, S. [3 ]
Gregoratti, L. [2 ]
Amati, M. [2 ]
Sezen, H. [2 ]
Parisse, P. [2 ]
Selve, S. [4 ]
Niermann, T. [3 ]
Berger, D. [4 ]
Neeb, M. [5 ]
Eberhardt, W. [3 ,6 ]
机构
[1] Univ Amran, Dept Phys, Coll Educ & Linguist, Sanaa, Yemen
[2] Elettra Sinchrotrone Trieste ScpA, SS14 Km163-5, I-34149 Trieste, Italy
[3] Tech Univ Berlin, IOAP, Str 17 Juni 135, D-10623 Berlin, Germany
[4] Tech Univ Berlin, ZELMI, Str 17 Juni 135, D-10623 Berlin, Germany
[5] Helmholtz Zentrum Berlin, WC Rontgen Campus Adlershof, D-12489 Berlin, Germany
[6] DESY, CFEL, Notkestr 85, D-22607 Hamburg, Germany
关键词
Cluster deposition; Ag-clusters; Graphene; XPS; Auger spectroscopy; SPEM; HR-TEM; Final-state Coulomb-interaction; SILVER CLUSTERS; PHOTOEMISSION; SURFACE; MICROSCOPY; GRAPHITE; METALS; GROWTH; GOLD; HOPG; AU;
D O I
10.1016/j.susc.2017.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Size-selected Age clusters on unsupported graphene of a commercial Quantifoil sample have been investigated by surface and element-specific techniques such as transmission electron microscopy (TEM), spatially-resolved inner-shell X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). An agglomeration of the highly mobile clusters into nm-sized Ag-nanodots of 2-3 nm is observed. Moreover, crystalline as well as non-periodic fivefold symmetric structures of the Ag-nanoparticles are evident by high-resolution TEM. Using a lognormal size-distribution as revealed by TEM, the measured positive binding energy shift of the air-exposed Ag-nanodots can be explained by the size-dependent dynamical liquid-drop model. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 50 条
  • [21] Elastic straining of free-standing monolayer graphene
    Ke Cao
    Shizhe Feng
    Ying Han
    Libo Gao
    Thuc Hue Ly
    Zhiping Xu
    Yang Lu
    Nature Communications, 11
  • [22] Nanoisland formation of small Agn-clusters on HOPG as determined by inner-shell photoionisation spectroscopy
    Al-Hada, M.
    Peters, S.
    Peredkov, S.
    Neeb, M.
    Eberhardt, W.
    SURFACE SCIENCE, 2015, 639 : 43 - 47
  • [23] Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene
    Saraswat, Garima
    Gupta, Priti
    Bhattacharya, Arnab
    Raychaudhuri, Pratap
    APL MATERIALS, 2014, 2 (05):
  • [24] Free-standing nanoparticle superlattice sheets controlled by DNA
    Cheng, Wenlong
    Campolongo, Michael J.
    Cha, Judy J.
    Tan, Shawn J.
    Umbach, Christopher C.
    Muller, David A.
    Luo, Dan
    NATURE MATERIALS, 2009, 8 (06) : 519 - 525
  • [25] Free-Standing Graphene-Encapsulated Silicon Nanoparticle Aerogel as an Anode for Lithium Ion Batteries
    Hu, Xiaozhen
    Jin, Yan
    Zhu, Bin
    Tan, Yingling
    Zhang, Su
    Zong, Linqi
    Lu, Zhenda
    Zhu, Jia
    CHEMNANOMAT, 2016, 2 (07): : 671 - 674
  • [26] Formation of germanene with free-standing lattice constant
    Yuhara, Junji
    Matsuba, Daiki
    Ono, Masaki
    Ohta, Akio
    Miyazaki, Seiichi
    Araidai, Masaaki
    Takakura, Sho-ichi
    Nakatake, Masashi
    Le Lay, Guy
    SURFACE SCIENCE, 2023, 738
  • [27] Active bialkali photocathodes on free-standing graphene substrates
    Yamaguchi, Hisato
    Liu, Fangze
    DeFazio, Jeffrey
    Villarrubia, Claudia W. Narvaez
    Finkenstadt, Daniel
    Shabaev, Andrew
    Jensen, Kevin L.
    Pavlenko, Vitaly
    Mehl, Michael
    Lambrakos, Sam
    Gupta, Gautam
    Mohite, Aditya D.
    Moody, Nathan A.
    NPJ 2D MATERIALS AND APPLICATIONS, 2017, 1
  • [28] Free-standing graphene by scanning transmission electron microscopy
    Song, F. Q.
    Li, Z. Y.
    Wang, Z. W.
    He, L.
    Han, M.
    Wang, G. H.
    ULTRAMICROSCOPY, 2010, 110 (12) : 1460 - 1464
  • [29] Active bialkali photocathodes on free-standing graphene substrates
    Hisato Yamaguchi
    Fangze Liu
    Jeffrey DeFazio
    Claudia W. Narvaez Villarrubia
    Daniel Finkenstadt
    Andrew Shabaev
    Kevin L. Jensen
    Vitaly Pavlenko
    Michael Mehl
    Sam Lambrakos
    Gautam Gupta
    Aditya D. Mohite
    Nathan A. Moody
    npj 2D Materials and Applications, 1
  • [30] Realization of free-standing silicene using bilayer graphene
    Neek-Amal, M.
    Sadeghi, A.
    Berdiyorov, G. R.
    Peeters, F. M.
    APPLIED PHYSICS LETTERS, 2013, 103 (26)