Nanoparticle formation of deposited Agn-clusters on free-standing graphene

被引:9
|
作者
Al-Hada, M. [1 ,2 ]
Peters, S. [3 ]
Gregoratti, L. [2 ]
Amati, M. [2 ]
Sezen, H. [2 ]
Parisse, P. [2 ]
Selve, S. [4 ]
Niermann, T. [3 ]
Berger, D. [4 ]
Neeb, M. [5 ]
Eberhardt, W. [3 ,6 ]
机构
[1] Univ Amran, Dept Phys, Coll Educ & Linguist, Sanaa, Yemen
[2] Elettra Sinchrotrone Trieste ScpA, SS14 Km163-5, I-34149 Trieste, Italy
[3] Tech Univ Berlin, IOAP, Str 17 Juni 135, D-10623 Berlin, Germany
[4] Tech Univ Berlin, ZELMI, Str 17 Juni 135, D-10623 Berlin, Germany
[5] Helmholtz Zentrum Berlin, WC Rontgen Campus Adlershof, D-12489 Berlin, Germany
[6] DESY, CFEL, Notkestr 85, D-22607 Hamburg, Germany
关键词
Cluster deposition; Ag-clusters; Graphene; XPS; Auger spectroscopy; SPEM; HR-TEM; Final-state Coulomb-interaction; SILVER CLUSTERS; PHOTOEMISSION; SURFACE; MICROSCOPY; GRAPHITE; METALS; GROWTH; GOLD; HOPG; AU;
D O I
10.1016/j.susc.2017.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Size-selected Age clusters on unsupported graphene of a commercial Quantifoil sample have been investigated by surface and element-specific techniques such as transmission electron microscopy (TEM), spatially-resolved inner-shell X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). An agglomeration of the highly mobile clusters into nm-sized Ag-nanodots of 2-3 nm is observed. Moreover, crystalline as well as non-periodic fivefold symmetric structures of the Ag-nanoparticles are evident by high-resolution TEM. Using a lognormal size-distribution as revealed by TEM, the measured positive binding energy shift of the air-exposed Ag-nanodots can be explained by the size-dependent dynamical liquid-drop model. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 50 条
  • [1] Corrugations in Free-Standing Graphene
    Singh, Rajendra
    Scheinecker, Daniel
    Ludacka, Ursula
    Kotakoski, Jani
    NANOMATERIALS, 2022, 12 (20)
  • [2] Tearing of free-standing graphene
    Moura, M. J. B.
    Marder, M.
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [3] Free-Standing Epitaxial Graphene
    Shivaraman, Shriram
    Barton, Robert A.
    Yu, Xun
    Alden, Jonathan
    Herman, Lihong
    Chandrashekhar, M. V. S.
    Park, Jiwoong
    McEuen, Paul L.
    Parpia, Jeevak M.
    Craighead, Harold G.
    Spencer, Michael G.
    NANO LETTERS, 2009, 9 (09) : 3100 - 3105
  • [4] Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering
    Eller, Michael J.
    Liang, Chao-Kai
    Della-Negra, Serge
    Clubb, Aaron B.
    Kim, Hansoo
    Young, Amanda E.
    Schweikert, Emile A.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (04):
  • [5] Low-energy electron transmission imaging of clusters on free-standing graphene
    Longchamp, Jean-Nicolas
    Latychevskaia, Tatiana
    Escher, Conrad
    Fink, Hans-Werner
    APPLIED PHYSICS LETTERS, 2012, 101 (11)
  • [6] Thermal fluctuations of free-standing graphene
    Braghin, F. L.
    Hasselmann, N.
    PHYSICAL REVIEW B, 2010, 82 (03)
  • [7] Deuterium Adsorption on Free-Standing Graphene
    Abdelnabi, Mahmoud Mohamed Saad
    Izzo, Chiara
    Blundo, Elena
    Betti, Maria Grazia
    Sbroscia, Marco
    Di Bella, Giulia
    Cavoto, Gianluca
    Polimeni, Antonio
    Garcia-Cortes, Isabel
    Rucandio, Isabel
    Morono, Alejandro
    Hu, Kailong
    Ito, Yoshikazu
    Mariani, Carlo
    NANOMATERIALS, 2021, 11 (01) : 1 - 14
  • [8] Free-standing graphene at atomic resolution
    Mhairi H. Gass
    Ursel Bangert
    Andrew L. Bleloch
    Peng Wang
    Rahul R. Nair
    A. K. Geim
    Nature Nanotechnology, 2008, 3 : 676 - 681
  • [9] Free-standing graphene at atomic resolution
    Gass, Mhairi H.
    Bangert, Ursel
    Bleloch, Andrew L.
    Wang, Peng
    Nair, Rahul R.
    Geim, A. K.
    NATURE NANOTECHNOLOGY, 2008, 3 (11) : 676 - 681
  • [10] Flexural phonons in free-standing graphene
    Mariani, Eros
    von Oppen, Felix
    PHYSICAL REVIEW LETTERS, 2008, 100 (07)