Facile and sustainable shear mixing/carbonization approach for upcycling of carton into superhydrophobic coating for efficient oil-water separation

被引:28
|
作者
Yuan, Shi-Jie [1 ,2 ]
Zhang, Jia-Jia [1 ]
Fan, Hao-Xiang [1 ]
Dai, Xiao-Hu [1 ,2 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Old corrugated container; Oil/water separation; Superhydrophobic coating; Shear mixing; Cellulosic waste; CARBON AEROGELS; SURFACES; CELLULOSE; RATIO;
D O I
10.1016/j.jclepro.2018.06.105
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of facile and sustainable methods to produce efficient oil-water separation materials is an important and challenging problem. This paper presents a simple and green shear mixing/carbonization approach for the upcycling of old corrugated containers into a superhydrophobic coating (OCF-600), which can be applied to a suitable sponge material and used to clean up oil spills and organic solution leaks. There is a synergetic effect between the shear mixing and carbonization processes. The water contact angle of OCF-600 (152.57 +/- 1.50 degrees), which is obtained by the shear mixing/carbonization process using cartons as the only precursor, is significantly larger than that of materials obtained by individual shear mixing or carbonization methods, and even larger than that of carbon material obtained by carbonization/shear mixing process (138.85 +/- 0.85 degrees). The shear mixing drastically enhanced the surface roughness, whereas the carbonization led to the formation of the hydrophobic groups, further strengthened its micro-roughness, and amplified the surface property to superhydrophobicity. The OCF-600 can easily be coated onto several substrates to form superhydrophobic materials for efficient oil water separation with excellent durability and selectivity, even under corrosive and turbulent conditions. The OCF-600 coated sponges exhibited favorable adsorption capacities range from 18 to 44 times their own weight for various kinds of oils and organic solvents. The OCF-600 coated microporous membrane can separate surfactant-stabilized oil-water emulsions with a separation efficiency of greater than 99.88%. Furthermore, this approach can be extended to a series of cellulosic waste, thus could open up new prospects for the fabrication of superhydrophobic coatings through the sustainable upcycling of waste products. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:644 / 652
页数:9
相关论文
共 50 条
  • [31] Facile fabrication of superhydrophobic sand: Potential advantages for practical application in oil-water separation
    Men, Xuehu
    Ge, Bo
    Li, Peilong
    Zhu, Xiaotao
    Shi, Xiangchen
    Zhang, Zhaozhu
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2016, 60 : 651 - 655
  • [32] Facile Fabrication of Superhydrophobic Cross-Linked Nanocellulose Aerogels for Oil-Water Separation
    Shang, Qianqian
    Chen, Jianqiang
    Hu, Yun
    Yang, Xiaohui
    Hu, Lihong
    Liu, Chengguo
    Ren, Xiaoli
    Zhou, Yonghong
    POLYMERS, 2021, 13 (04) : 1 - 14
  • [33] A facile approach to fabricating fluorine-free superhydrophobic cotton fabric with excellent oil-water separation performance
    Xu, Junhuang
    Li, Hongqiang
    Zheng, Longzhu
    Huang, Shangdong
    Fang, Weizhen
    Lai, Xuejun
    Zeng, Xingrong
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (35)
  • [34] Facile fabrication of superhydrophobic fly ash-coated mesh for oil-water separation
    Zhang Xuemei
    Fu Feng
    Gao Xiaoming
    Hou Xiufang
    Niu Fengxing
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2022, 43 (02) : 237 - 242
  • [35] Facile fabrication of durable superhydrophobic mesh via candle soot for oil-water separation
    Zhang, Xudong
    Pan, Yamin
    Gao, Qingsen
    Zhao, Junyang
    Wang, Yaming
    Liu, Chuntai
    Shen, Changyu
    Liu, Xianhu
    PROGRESS IN ORGANIC COATINGS, 2019, 136
  • [36] Facile preparation of durably magnetic superhydrophobic sponge and its application in oil-water separation
    Hu, Jiang
    Zhu, Jundong
    Jiang, Chongwen
    Guo, Tianyu
    Song, Quzhi
    Xie, Le
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 577 : 429 - 439
  • [37] A facile preparation of superhydrophobic L-CNC-coated meshes for oil-water separation
    Huang, Jingda
    Li, Mengmeng
    Lu, Youwei
    Ren, Changying
    Wang, Siqun
    Wu, Qiang
    Li, Qian
    Zhang, Wenbiao
    Liu, Xianmiao
    RSC ADVANCES, 2021, 11 (23) : 13992 - 13999
  • [38] Facile fabrication of superhydrophobic wood aerogel by vapor deposition method for oil-water separation
    Zhu, Yurong
    Li, Hongqiang
    Huang, Wei
    Lai, Xuejun
    Zeng, Xingrong
    SURFACES AND INTERFACES, 2023, 37
  • [39] Facile preparation of superhydrophilic and superoleophobic sand for efficient oil-water separation
    Zhu, Guoxin
    Zhang, Xiong
    He, Yan
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 61
  • [40] Magnetic Wood-based Superhydrophobic Aerogel for Efficient Oil-Water Separation
    Junqing Chen
    Zede Yi
    Shiyu Fu
    Paper and Biomaterials, 2022, 7 (02) : 56 - 66