Understanding Gaussian process regression using the equivalent kernel

被引:0
|
作者
Sollich, P [1 ]
Williams, CKI
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Edinburgh, Sch Informat, Edinburgh EH1 2QL, Midlothian, Scotland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The equivalent kernel [1] is a way of understanding how Gaussian process regression works for large sample sizes based on a continuum limit. In this paper we show how to approximate the equivalent kernel of the widely-used squared exponential (or Gaussian) kernel and related kernels. This is easiest for uniform input densities, but we also discuss the generalization to the non-uniform case. We show further that the equivalent kernel can be used to understand the learning curves for Gaussian processes, and investigate how kernel smoothing using the equivalent kernel compares to full Gaussian process regression.
引用
收藏
页码:211 / 228
页数:18
相关论文
共 50 条
  • [1] GHI forecasting using Gaussian process regression: kernel study
    Tolba, Hanany
    Dkhili, Nouha
    Nou, Julien
    Eynard, Julien
    Thil, Stephane
    Grieu, Stephan
    [J]. IFAC PAPERSONLINE, 2019, 52 (04): : 455 - 460
  • [2] REGRESSION USING GAUSSIAN PROCESS MANIFOLD KERNEL DIMENSIONALITY REDUCTION
    Moon, Kooksang
    Pavlovic, Vladimir
    [J]. 2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 14 - 19
  • [3] Sparse Inverse Kernel Gaussian Process Regression
    Das, Kamalika
    Srivastava, Ashok N.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (03) : 205 - 220
  • [4] Multiresolution Kernel Approximation for Gaussian Process Regression
    Ding, Yi
    Kondor, Risi
    Eskreis-Winkler, Jonathan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] Longitudinal Deep Kernel Gaussian Process Regression
    Liang, Junjie
    Wu, Yanting
    Xu, Dongkuan
    Honavar, Vasant G.
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8556 - 8564
  • [6] Sensor Reading Prediction using Anisotropic Kernel Gaussian Process Regression
    Jannah, Erliyah Nurul
    Pao, Hsing-Kuo
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE (ITHINGS) - 2014 IEEE INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) - 2014 IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL-SOCIAL COMPUTING (CPS), 2014, : 207 - 214
  • [7] Gradient Sensitive Kernel for Image Denoising, using Gaussian Process Regression
    Dey, Arka Ujjal
    Harit, Gaurav
    [J]. 2015 FIFTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2015,
  • [8] Deck motion prediction using neural kernel network Gaussian process regression
    Qin, Peng
    Luo, Jianjun
    Ma, Weihua
    Wu, Liming
    [J]. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2024, 42 (03): : 377 - 385
  • [9] Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
    Wang, Wenjia
    Jing, Bing-Yi
    [J]. Journal of Machine Learning Research, 2022, 23
  • [10] Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
    Wang, Wenjia
    Jing, Bing-Yi
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 67