Multiresolution Kernel Approximation for Gaussian Process Regression

被引:0
|
作者
Ding, Yi [1 ]
Kondor, Risi [1 ,2 ]
Eskreis-Winkler, Jonathan [2 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
关键词
MATRIX;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian process regression generally does not scale to beyond a few thousands data points without applying some sort of kernel approximation method. Most approximations focus on the high eigenvalue part of the spectrum of the kernel matrix, K, which leads to bad performance when the length scale of the kernel is small. In this paper we introduce Multiresolution Kernel Approximation (MKA), the first true broad bandwidth kernel approximation algorithm. Important points about MKA are that it is memory efficient, and it is a direct method, which means that it also makes it easy to approximate K-1 and det(K).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multiresolution Partitioned Gaussian Process Regression for Terrain Estimation
    Zhang, Clark
    Ono, Masahiro
    Lanka, Ravi
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [2] Sparse Inverse Kernel Gaussian Process Regression
    Das, Kamalika
    Srivastava, Ashok N.
    STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (03) : 205 - 220
  • [3] Bayesian generative kernel Gaussian process regression
    Kuok, Sin-Chi
    Yao, Shuang-Ao
    Yuen, Ka-Veng
    Yan, Wang-Ji
    Girolami, Mark
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 227
  • [4] Longitudinal Deep Kernel Gaussian Process Regression
    Liang, Junjie
    Wu, Yanting
    Xu, Dongkuan
    Honavar, Vasant G.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8556 - 8564
  • [5] Understanding Gaussian process regression using the equivalent kernel
    Sollich, P
    Williams, CKI
    DETERMINISTIC AND STATISTICAL METHODS IN MACHINE LEARNING, 2005, 3635 : 211 - 228
  • [6] Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
    Wang, Wenjia
    Jing, Bing-Yi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 67
  • [7] Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
    Wang, Wenjia
    Jing, Bing-Yi
    Journal of Machine Learning Research, 2022, 23
  • [8] A Framework for Evaluating Approximation Methods for Gaussian Process Regression
    Chalupka, Krzysztof
    Williams, Christopher K. I.
    Murray, Iain
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 333 - 350
  • [9] A framework for evaluating approximation methods for Gaussian process regression
    Chalupka, K. (KJCHALUP@CALTECH.EDU), 1600, Microtome Publishing (14):
  • [10] GHI forecasting using Gaussian process regression: kernel study
    Tolba, Hanany
    Dkhili, Nouha
    Nou, Julien
    Eynard, Julien
    Thil, Stephane
    Grieu, Stephan
    IFAC PAPERSONLINE, 2019, 52 (04): : 455 - 460