Encapsulation of Ni3Fe Nanoparticles in N-Doped Carbon Nanotube-Grafted Carbon Nanofibers as High-Efficiency Hydrogen Evolution Electrocatalysts

被引:181
|
作者
Li, Tongfei [1 ]
Luo, Gan [1 ]
Liu, Kunhao [1 ]
Li, Xin [1 ]
Sun, Dongmei [1 ]
Xu, Lin [1 ]
Li, Yafei [1 ]
Tang, Yawen [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Key Lab New Power Batteries, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; hierarchical carbon nanofibers; hydrogen evolution reaction; Ni3Fe nanoparticles; nonprecious electrocatalysts; OXYGEN REDUCTION; HYBRIDS; CATALYSTS; TRENDS; MATRIX; ARRAYS;
D O I
10.1002/adfm.201805828
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exploration of cost-effective yet high-efficiency inexpensive electrocatalysts for the hydrogen evolution reaction (HER) is of critical significance for future renewable energy conversion technologies. A feasible electrospinning strategy to construct a novel 1D hierarchical nanoarchitecture comprising Ni3Fe nanoalloy-encapsulated carbon nanotubes grown onto N-doped carbon nanofibers (abbreviated as Ni3Fe@N-C NT/NFs) is demonstrated here. Benefiting from the abundant firmly immobilized Ni3Fe nanoparticles for catalytic sites and hierarchical fibrous nanostructures for effective electron transport and mass diffusion, the resultant Ni3Fe@N-C NT/NFs display an extraordinary HER activity with a low overpotential of 72 mV to reach a current density of 10 mA cm(-2) in KOH medium and a remarkable stability for 40 000 s. Theoretical studies corroborate that the resultant Ni3Fe@N-C NT/NFs exhibit a favorable Gibbs free energy of hydrogen adsorption (Delta G(H*) = -0.14 eV), further manifesting their superior HER activity. The present work will advance the development of highly efficient nonprecious electrocatalysts for energy conversion.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Encapsulation of Ni3Fe nanoparticles in n-doped carbon nanotube-grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts
    Li, Tongfei
    Tang, Yawen
    Zhang, Yiwei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [2] Ru-Fe4C nanoparticles loaded on N-doped carbon nanofibers as self-supporting high-efficiency hydrogen evolution electrocatalysts
    Zou, Qun
    Zhu, Yingjing
    Zhang, Rui
    Guan, Jibiao
    Wang, Lina
    Guo, Baochun
    Zhang, Ming
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (35) : 16727 - 16734
  • [3] N-doped CoP nanoparticles embedded in electrospun N-doped porous carbon nanofiber as high-efficiency oxygen evolution electrocatalysts
    Cui, Zhixiang
    Lin, Jixin
    Wu, Jiahui
    Yu, Jiaqi
    Si, Junhui
    Wang, Qianting
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [4] Cobalt Sulfide Nanoparticles Encapsulated in Carbon Nanotube-Grafted Carbon Nanofibers as Catalysts for Oxygen Evolution
    Guo, Xu
    Yu, Meixin
    Chang, Xin
    Ma, Xinzhi
    Zhang, Mingyi
    ACS APPLIED NANO MATERIALS, 2022, 5 (11) : 16594 - 16601
  • [5] Ni3Fe nanoparticles encapsulated by N-doped carbon derived from MOFs for oxygen evolution reaction
    Cao, Feng
    Wu, Xinge
    Li, Mengyang
    Chen, Susu
    Chen, Biao
    Duan, Guosheng
    Chen, Yan
    Meng, Xiangying
    Li, Guoqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [6] Ni3Fe nanoparticles encapsulated by N-doped carbon derived from MOFs for oxygen evolution reaction
    Cao, Feng
    Wu, Xinge
    Li, Mengyang
    Chen, Susu
    Chen, Biao
    Duan, Guosheng
    Chen, Yan
    Meng, Xiangying
    Li, Guoqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [7] Coupling molybdenum carbide nanoparticles with N-doped carbon nanosheets as a high-efficiency electrocatalyst for hydrogen evolution reaction
    Zhou, Guangyao
    Yang, Qian
    Guo, Xiaomeng
    Chen, Yang
    Yang, Qian
    Xu, Lin
    Sun, Dongmei
    Tang, Yawen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (19) : 9326 - 9333
  • [8] N-Doped Carbon-Wrapped Cobalt Nanoparticles on N-Doped Graphene Nanosheets for High-Efficiency Hydrogen Production
    Zhou, Weijia
    Zhou, Jian
    Zhou, Yucheng
    Lu, Jia
    Zhou, Kai
    Yang, Linjing
    Tang, Zhenghua
    Li, Ligui
    Chen, Shaowei
    CHEMISTRY OF MATERIALS, 2015, 27 (06) : 2026 - 2032
  • [9] RuCo Alloy Nanoparticles Embedded into N-Doped Carbon for High Efficiency Hydrogen Evolution Electrocatalyst
    Wang, Cheng
    Wang, Yibo
    Shi, Zhaoping
    Luo, Wenhua
    Ge, Junjie
    Xing, Wei
    Sang, Ge
    Liu, Changpeng
    ENERGIES, 2022, 15 (08)
  • [10] Coupling Hierarchical Ultrathin Co Nanosheets With N-Doped Carbon Plate as High-Efficiency Oxygen Evolution Electrocatalysts
    Wang, Yue
    Li, Meng
    Zhou, Qixing
    Wang, Qin
    Zhang, Xingyuan
    Sun, Dongmei
    Tang, Yawen
    FRONTIERS IN NANOTECHNOLOGY, 2021, 3