N-Doped Carbon-Wrapped Cobalt Nanoparticles on N-Doped Graphene Nanosheets for High-Efficiency Hydrogen Production

被引:294
|
作者
Zhou, Weijia [1 ]
Zhou, Jian [2 ,3 ]
Zhou, Yucheng [1 ]
Lu, Jia [1 ]
Zhou, Kai [1 ]
Yang, Linjing [1 ]
Tang, Zhenghua [1 ]
Li, Ligui [1 ]
Chen, Shaowei [1 ,4 ]
机构
[1] S China Univ Technol, Guangzhou Higher Educ Mega Ctr, Sch Environm & Energy, New Energy Res Inst, Guangzhou 510006, Guangdong, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[4] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
关键词
MOS2 ULTRATHIN NANOSHEETS; EVOLUTION REACTION; NITROGEN; NANOTUBES; CATALYSTS; ELECTROCATALYSTS; PHOSPHIDE; OXIDE;
D O I
10.1021/acs.chemmater.5b00331
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of non-noble-metal catalysts for hydrogen evolution reaction (HER) with both excellent activity and robust stability has remained a key challenge in the past decades. Herein, for the first time, N-doped carbon-wrapped cobalt nanoparticles supported on N-doped graphene nanosheets were prepared by a facile solvothermal procedure and subsequent calcination at controlled temperatures. The electrocatalytic activity for HER was examined in 0.5 M H2SO4. Electrochemical measurements showed a small overpotential of only -49 mV with a Tafel slope of 79.3 mV/dec. Theoretical calculations based on density functional theory showed that the catalytically active sites were due to carbon atoms promoted by the entrapped cobalt nanopartides. The results may offer a new methodology for the preparation of effective catalysts for water splitting technology.
引用
收藏
页码:2026 / 2032
页数:7
相关论文
共 50 条
  • [1] N-doped carbon-wrapped MoxC heterophase sheets for high-efficiency electrochemical hydrogen production
    Xiong, Tanli
    Jia, Jin
    Wei, Zhaoqian
    Zeng, Lili
    Deng, Yunqie
    Zhou, Weijia
    Chen, Shaowei
    CHEMICAL ENGINEERING JOURNAL, 2019, 358 : 362 - 368
  • [2] Coupling molybdenum carbide nanoparticles with N-doped carbon nanosheets as a high-efficiency electrocatalyst for hydrogen evolution reaction
    Zhou, Guangyao
    Yang, Qian
    Guo, Xiaomeng
    Chen, Yang
    Yang, Qian
    Xu, Lin
    Sun, Dongmei
    Tang, Yawen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (19) : 9326 - 9333
  • [3] N-Doped Carbon-Encapsulated Cobalt Nanoparticles on N-Doped Graphene Nanosheets as a High-Capacity Anode Material for Lithium-Ion Storage
    Geng Kai-Ming
    Wu Jun-Jie
    Geng Hong-Bo
    Hu Ya-Yun
    Qu Gen-Long
    Pan Yue
    Zheng Jun-Wei
    Gu Hong-Wei
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2016, 32 (09) : 1495 - 1502
  • [4] N-doped CoP nanoparticles embedded in electrospun N-doped porous carbon nanofiber as high-efficiency oxygen evolution electrocatalysts
    Cui, Zhixiang
    Lin, Jixin
    Wu, Jiahui
    Yu, Jiaqi
    Si, Junhui
    Wang, Qianting
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [5] N-doped activated carbon for high-efficiency ofloxacin adsorption
    He, Song
    Chen, Qilin
    Chen, Guanyu
    Shi, Guibin
    Ruan, Chichi
    Feng, Mengmeng
    Ma, Yuansheng
    Jin, Xin
    Liu, Xinyu
    Du, Chunhua
    He, Chunxiang
    Dai, Huaming
    Cao, Chengyang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 335
  • [6] Polyaniline Derived N-Doped Carbon-Coated Cobalt Phosphide Nanoparticles Deposited on N-Doped Graphene as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Ma, Jingwen
    Wang, Min
    Lei, Guangyu
    Zhang, Guoliang
    Zhang, Fengbao
    Peng, Wenchao
    Fan, Xiaobin
    Li, Yang
    SMALL, 2018, 14 (02)
  • [7] NiMo Nanoparticles Anchored on N-Doped Carbon Rods for High-Efficiency Hydrogen Electrooxidation in Alkaline Media
    Xiong, Bingyan
    Jin, Binbin
    Zhao, Wenbin
    Zhou, Hangyan
    Luo, Juanjuan
    Si, Di
    Chen, Lisong
    Shi, Jianlin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (13) : 15475 - 15481
  • [8] Embedded cobalt sulfide/N-doped reduced graphene oxide nanocomposite for high-efficiency hydrogen evolution catalysis
    Wei, Wei
    Sun, Wei
    Hu, Huihui
    Zhai, Yunpeng
    Xie, Jimin
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [9] Ag nanoparticles wrapped by N-doped carbon as an efficient electricatalyst for hydrogen evolution reaction
    Xin Liang
    Yong Li
    Journal of Porous Materials, 2020, 27 : 1213 - 1218
  • [10] Ag nanoparticles wrapped by N-doped carbon as an efficient electricatalyst for hydrogen evolution reaction
    Liang, Xin
    Li, Yong
    JOURNAL OF POROUS MATERIALS, 2020, 27 (04) : 1213 - 1218