Research on Detection of Mycobacterium Tuberculosis from Microscopic Sputum Smear Images using Image Segmentation

被引:0
|
作者
Saravanan, D. [1 ]
Bhavya, R. [1 ]
Archanaa, G. I. [1 ]
Karthika, D. [1 ]
Subban, Ravi [2 ]
机构
[1] IFET Coll Engn & Technol, Dept Comp Sci & Engn, Villupuram, India
[2] Pondicherry Univ, Sch Engn & Technol, Dept Comp Sci, Pondicherry, India
关键词
color space; image segmentation; classification models; DIAGNOSIS; ANTIGENS; BACTERIA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tuberculosis (TB) is a deadly disease caused by a bacteria called Mycobacterium tuberculosis that can affect lungs mostly. Besides it is a disease that affects not only lungs in the body of a human being but other parts also. There are few diseases that kills the human population. The commonly used tools that can detect TB are: GeneXpert, microscopy, tuberculin bacilli test (TST), chest X-ray, interferon-y release assay (IGRA), and culture test. But the sputum smear microscopy is the mostly used tool. The merits of using this tool are: it is supposed to be easier, faster and cheaper than other methods without requiring much technical expertise and yielding sufficiently fast results. But the problem with this tool is that the screening may fail to detect TB and requires some eye strain with concentration. The automatic screening method will remove this problem. This paper provides research review on TB detection using image processing techniques.
引用
收藏
页码:969 / 974
页数:6
相关论文
共 50 条
  • [21] Segmentation and Classification of Mycobacterium from Ziehl Neelsen Stained Sputum Images for Tuberculosis Diagnosis
    Mithra, K. S.
    Emmanuel, W. R. Sam
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 1672 - 1676
  • [22] GFNN: Gaussian-Fuzzy-Neural network for diagnosis of tuberculosis using sputum smear microscopic images
    Mithra, K. S.
    Emmanuel, W. R. Sam
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2021, 33 (09) : 1084 - 1095
  • [23] A segmentation algorithm for optical microscopic mycobacterium tuberculosis images based on region segmentation
    Zhou, Dongxiang, 1600, National University of Defense Technology (36):
  • [24] Identification of Mycobacterium Tuberculosis in Sputum Smear Slide Using Automatic Scanning Microscope
    Rulaningtyas, Riries
    Suksmono, Andriyan B.
    Mengko, Tati L. R.
    Saptawati, Putri
    5TH ASIAN PHYSICS SYMPOSIUM (APS 2012), 2015, 1656
  • [25] Grading of a positive sputum smear and the risk of Mycobacterium tuberculosis transmission
    Lohmann, E. M.
    Koster, B. F. P. J.
    le Cessie, S.
    Agterveld, M. P. Kamst-van
    van Soolingen, D.
    Arend, S. M.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2012, 16 (11) : 1477 - 1484
  • [26] Early and Efficient Detection of Mycobacterium tuberculosis in Sputum by Microscopic Observation of Broth Cultures
    Kidenya, Benson R.
    Kabangila, Rodrick
    Peck, Robert N.
    Mshana, Stephen E.
    Webster, Lauren E.
    Koenig, Serena P.
    Johnson, Warren D., Jr.
    Fitzgerald, Daniel W.
    PLOS ONE, 2013, 8 (02):
  • [27] Image Analysis for Malaria Parasite Detection from Microscopic Images of Thick Blood Smear
    Dave, Ishan R.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 1303 - 1307
  • [28] Rapid detection of Mycobacterium tuberculosis from sputum specimens using the FASTPlaqueTB test
    Kiraz, N.
    Et, L.
    Akgun, Y.
    Kasifoglu, N.
    Kiremitci, A.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2007, 11 (08) : 904 - 908
  • [29] Olfactory Detection of Mycobacterium tuberculosis in the Sputum
    Kubin, Milan
    EPIDEMIOLOGIE MIKROBIOLOGIE IMUNOLOGIE, 2011, 60 (02): : 87 - 88
  • [30] Comparative Evaluation of Nested PCR and Conventional Smear Methods for the Detection of Mycobacterium tuberculosis in Sputum Samples
    Sathish Sankar
    Babu Balakrishnan
    Balaji Nandagopal
    Kannaki Thangaraju
    Subapriya Natarajan
    Molecular Diagnosis & Therapy, 2010, 14 : 223 - 227