An Omics Approach to Understand the Plant Abiotic Stress

被引:62
|
作者
Debnath, Mousumi [1 ]
Pandey, Mukeshwar [2 ]
Bisen, P. S. [3 ]
机构
[1] Cent Univ Rajasthan, Dept Biotechnol, Kishangarh 305802, India
[2] Xcelris Genom, Ahmadabad, Gujarat, India
[3] Jiwaji Univ, Sch Studies Biotechnol, Gwalior, India
关键词
ACTIVATED PROTEIN-KINASE; HEAVY-METAL STRESS; JATROPHA-CURCAS L; SALT-STRESS; CATHARANTHUS-ROSEUS; GENE-EXPRESSION; MESSENGER-RNA; ABSCISIC-ACID; SIGNAL-TRANSDUCTION; OSMOTIC-STRESS;
D O I
10.1089/omi.2010.0146
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Abiotic stress can lead to changes in development, productivity, and severe stress and may even threaten survival of plants. Several environmental stresses cause drastic changes in the growth, physiology, and metabolism of plants leading to the increased accumulation of secondary metabolites. As medicinal plants are important sources of drugs, steps are taken to understand the effect of stress on the physiology, biochemistry, genomic, proteomic, and metabolic levels. The molecular responses of plants to abiotic stress are often considered as a complex process. They are mainly based on the modulation of transcriptional activity of stressrelated genes. Many genes have been induced under stress conditions. The products of stress- inducible genes protecting against these stresses includes the enzymes responsible for the synthesis of various osmoprotectants. Genetic engineering of tolerance to abiotic stresses help in molecular understanding of pathways induced in response to one or more of the abiotic stresses. Systems biology and virtual experiments allow visualizing and understanding how plants work to overcome abiotic stress. This review discusses the omic approach to understand the plant response to abiotic stress with special emphasis on medicinal plant.
引用
收藏
页码:739 / 762
页数:24
相关论文
共 50 条
  • [31] Plant signaling in biotic and abiotic stress
    Peck, Scott
    Mittler, Ron
    JOURNAL OF EXPERIMENTAL BOTANY, 2020, 71 (05) : 1649 - 1651
  • [32] Brassinosteroids in Plant Tolerance to Abiotic Stress
    Ahammed, Golam Jalal
    Li, Xin
    Liu, Airong
    Chen, Shuangchen
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (04) : 1451 - 1464
  • [33] A systemic approach to understand plants' responses under abiotic stress: a laboratory exercise for undergraduate biology majors
    Bhushan, Gupta Deepti
    JOURNAL OF BIOLOGICAL EDUCATION, 2020, 54 (03) : 262 - 270
  • [34] Omics-assisted crop improvement under abiotic stress conditions
    Raza, Ali
    Gangurde, Sunil S.
    Sandhu, Karansher Singh
    Lv, Yan
    PLANT STRESS, 2024, 14
  • [35] Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress?
    Salama, El-Sayed
    Govindwar, Sanjay P.
    Khandare, Rahul V.
    Roh, Hyun-Seog
    Jeon, Byong-Hun
    Li, Xiangkai
    TRENDS IN PLANT SCIENCE, 2019, 24 (07) : 611 - 624
  • [36] Multi-omics atlas of combinatorial abiotic stress responses in wheat
    Da Ros, Letitia
    Bollina, Venkatesh
    Soolanayakanahally, Raju
    Pahari, Shankar
    Elferjani, Raed
    Kulkarni, Manoj
    Vaid, Neha
    Risseuw, Eddy
    Cram, Dustin
    Pasha, Asher
    Esteban, Eddi
    Konkin, David
    Provart, Nicholas
    Nambara, Eiji
    Kagale, Sateesh
    PLANT JOURNAL, 2023, 116 (04): : 1118 - 1135
  • [37] Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes
    Ali, Amjad
    Altaf, Muhammad Tanveer
    Nadeem, Muhammad Azhar
    Karakoey, Tolga
    Shah, Adnan Noor
    Azeem, Hajra
    Baloch, Faheem Shehzad
    Baran, Nurettin
    Hussain, Tajamul
    Duangpan, Saowapa
    Aasim, Muhammad
    Boo, Kyung-Hwan
    Abdelsalam, Nader R.
    Hasan, Mohamed E.
    Chung, Yong Suk
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [38] Plant growth-promoting rhizobacteria (PGPR) and plant hormones: an approach for plant abiotic stress management and sustainable agriculture
    Kunal
    Pranaw, Kumar
    Kumawat, Kailash Chand
    Meena, Vijay Singh
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [39] Metabolomics: a tool to understand plant protection against biotic and abiotic stresses
    Cuyas, Laura
    Schwarzenberg, Adrian
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [40] A multi-omics approach to understand the underlying mechanisms of obesity
    Niu, J.
    Gieger, C.
    Peters, A.
    Sharma, S.
    Grallert, H.
    DIABETOLOGIA, 2024, 67 : S108 - S108