Phase control of entanglement and quantum steering in a three-mode optomechanical system

被引:34
|
作者
Sun, F. X. [1 ,2 ]
Mao, D. [1 ]
Dai, Y. T. [1 ]
Ficek, Z. [3 ,4 ]
He, Q. Y. [1 ,2 ]
Gong, Q. H. [1 ,2 ]
机构
[1] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Natl Ctr Appl Phys, KACST, POB 6086, Riyadh 11442, Saudi Arabia
[4] Univ Zielona Gora, Inst Phys, PL-65516 Zielona Gora, Poland
来源
NEW JOURNAL OF PHYSICS | 2017年 / 19卷
基金
中国国家自然科学基金;
关键词
phase control; mutual coherence; entanglement; quantum steering; optomechanics; GENUINE TRIPARTITE ENTANGLEMENT; INDUCED COHERENCE; ELECTROMECHANICS; MOTION; STATE;
D O I
10.1088/1367-2630/aa9c9a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of phase control of coherence, entanglement and quantum steering is developed for an optomechanical system composed of a single mode cavity containing a partially transmitting dielectric membrane and driven by short laser pulses. The membrane divides the cavity into two mutually coupled optomechanical cavities resulting in an effective three-mode closed loop system, two field modes of the two cavities and a mechanical mode representing the oscillating membrane. The closed loop in the coupling creates interfering channels which depend on the relative phase of the coupling strengths of the field modes to the mechanical mode. Populations and correlations of the output modes are calculated analytically and show several interesting phase dependent effects such as reversible population transfer from one field mode to the other, creation of collective modes, and induced coherence without induced emission. Wefind that these effects result from perfect mutual coherence between the field modes which is preserved even if one of the modes is not populated. The inseparability criterion for the output modes is also investigated and we find that entanglement may occur only between the field modes and the mechanical mode. Weshow that depending on the phase, the field modes can act on the mechanical mode collectively or individually resulting, respectively, in tripartite or bipartite entanglement. In addition, we examine the phase sensitivity of quantum steering of the mechanical mode by the field modes. Deterministic phase transfer of the steering from bipartite to collective is predicted and optimum steering corresponding to perfect EPR state can be achieved. These different types of quantum steering can be distinguished experimentally by measuring the coincidence rate between two detectors adjusted to collect photons of the output cavity modes. In particular, we find that the minima of the interference pattern of the coincidence rate signal the bipartite steering, while the maxima signal the collective steering.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Three-mode optomechanical system for angular velocity detection
    李凯
    Sankar Davuluri
    李勇
    Chinese Physics B, 2018, 27 (08) : 258 - 264
  • [22] Three-mode optomechanical system for angular velocity detection
    Li, Kai
    Davuluri, Sankar
    Li, Yong
    CHINESE PHYSICS B, 2018, 27 (08)
  • [23] Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction
    Liu, Jin
    Zhou, Yue-Hui
    Huang, Jian
    Huang, Jin-Feng
    Liao, Jie-Qiao
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [24] Nonreciprocity in a strongly coupled three-mode optomechanical circulatory system
    Shang, Cheng
    Shen, H. Z.
    Yi, X. X.
    OPTICS EXPRESS, 2019, 27 (18) : 25882 - 25901
  • [25] Nonlinear interaction effects in a three-mode cavity optomechanical system
    Qiu, Jing
    Jin, Li-Jing
    Peng, Zhen-Yang
    Chesi, Stefano
    Wang, Ying-Dan
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [26] Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems
    Xu, Xun-Wei
    Li, Yong
    PHYSICAL REVIEW A, 2015, 91 (05):
  • [27] Perfect Optical Nonreciprocity with Mechanical Driving in a Three-Mode Optomechanical System
    赵丽华
    李贤丽
    陆赫林
    田雪冬
    CommunicationsinTheoreticalPhysics, 2019, 71 (08) : 1011 - 1016
  • [28] Optical nonreciprocity in a three-mode optomechanical system within a common reservoir
    Tang, Bei
    Hou, Bang-Pin
    Zhao, Xiao-Hui
    Qian, Yi-Bing
    Lai, Deng-Gao
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (05) : 1550 - 1562
  • [29] Generation of Three-Mode Entanglement Based on Parametric Amplifiers Using Quantum Entanglement Swapping
    Wang, Hailong
    Ru, Ning
    Lin, Pingwei
    PHOTONICS, 2022, 9 (10)
  • [30] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
    闫甲楷
    朱小霏
    陈彬
    ChinesePhysicsB, 2018, 27 (07) : 387 - 392