Bifurcation Analysis of a Belousov-Zhabotinsky Reaction Model

被引:1
|
作者
Wang, Xiaoli [1 ]
Chang, Yu [2 ]
Xu, Dashun [3 ]
机构
[1] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
来源
关键词
Belousov-Zhabotinsky reaction; frequency domain; fourth-order harmonic balance; DETERMINISTIC CHAOS; CHEMICAL-REACTION; SYNCHRONIZATION; OSCILLATIONS; MECHANISM;
D O I
10.1142/S0218127415500935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the bifurcation phenomena in a Belousov-Zhabotinsky reaction model by applying Hopf bifurcation theory in frequency domain and harmonic balance method. The high accurate predictions, i.e. fourth-order harmonic balance approximation, on frequencies, amplitudes, and approximation expressions for periodic solutions emerging from Hopf bifurcation are provided. We also detect the stability and location of these periodic solutions. Numerical simulations not only confirm the theoretical analysis results but also illustrate some complex oscillations such as a cascade of period-doubling bifurcation, quasi-periodic solution, and period-doubling route to chaos. All these results improve the understanding of the dynamics of the model.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] AN EPR STUDY OF THE BELOUSOV-ZHABOTINSKY REACTION
    LALITHA, PV
    RAO, PS
    RAMASWAMY, R
    CHEMICAL PHYSICS LETTERS, 1993, 201 (5-6) : 559 - 562
  • [22] Controlled excitations of the Belousov-Zhabotinsky reaction
    Hastings, HM
    Sobel, SG
    Peralta, C
    Cammalleri, C
    Lang, D
    Zaharakis, A
    Hilaire, C
    Chaterpaul, S
    Ravinovitch, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2907 - U2907
  • [23] CHAOS IN A SIMULATED BELOUSOV-ZHABOTINSKY REACTION
    NOSKOV, OV
    KARAVAEV, AD
    KAZAKOV, VP
    SPIVAK, SI
    MENDELEEV COMMUNICATIONS, 1994, (03) : 82 - 85
  • [24] INTERMITTENT BEHAVIOR IN THE BELOUSOV-ZHABOTINSKY REACTION
    POMEAU, Y
    ROUX, JC
    ROSSI, A
    BACHELART, S
    VIDAL, C
    JOURNAL DE PHYSIQUE LETTRES, 1981, 42 (13): : 271 - 273
  • [25] A Spatial Frequency Domain Analysis of the Belousov-Zhabotinsky Reaction
    Guo, Lingzhong
    Guo, Yuzhu
    Zhao, Yifan
    Billings, Stephen A.
    Coca, Daniel
    Lang, Zhiqiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [26] CHAOTIC STATES IN THE BELOUSOV-ZHABOTINSKY REACTION
    NAGASHIMA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 49 (06) : 2427 - 2428
  • [27] CONTROLLING CHAOS IN THE BELOUSOV-ZHABOTINSKY REACTION
    PETROV, V
    GASPAR, V
    MASERE, J
    SHOWALTER, K
    NATURE, 1993, 361 (6409) : 240 - 243
  • [28] Hopf bifurcation and limit cycle of the two-variable Oregonator model for Belousov-Zhabotinsky reaction
    He, Zecen
    Zhao, Yulin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [29] TURING BIFURCATION AND STATIONARY PATTERNS IN THE FERROIN-CATALYZED BELOUSOV-ZHABOTINSKY REACTION
    ROVINSKY, AB
    JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (17): : 4606 - 4613
  • [30] A fractional analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction
    Akinyemi, Lanre
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):