Bifurcation Analysis of a Belousov-Zhabotinsky Reaction Model

被引:1
|
作者
Wang, Xiaoli [1 ]
Chang, Yu [2 ]
Xu, Dashun [3 ]
机构
[1] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
来源
关键词
Belousov-Zhabotinsky reaction; frequency domain; fourth-order harmonic balance; DETERMINISTIC CHAOS; CHEMICAL-REACTION; SYNCHRONIZATION; OSCILLATIONS; MECHANISM;
D O I
10.1142/S0218127415500935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the bifurcation phenomena in a Belousov-Zhabotinsky reaction model by applying Hopf bifurcation theory in frequency domain and harmonic balance method. The high accurate predictions, i.e. fourth-order harmonic balance approximation, on frequencies, amplitudes, and approximation expressions for periodic solutions emerging from Hopf bifurcation are provided. We also detect the stability and location of these periodic solutions. Numerical simulations not only confirm the theoretical analysis results but also illustrate some complex oscillations such as a cascade of period-doubling bifurcation, quasi-periodic solution, and period-doubling route to chaos. All these results improve the understanding of the dynamics of the model.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [1] Model of the Belousov-Zhabotinsky Reaction
    Stys, Dalibor
    Nahlik, Tomas
    Zhyrova, Anna
    Rychtarikova, Renata
    Papacek, Stepan
    Cisar, Petr
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, HPCSE 2015, 2016, 9611 : 171 - 185
  • [2] SIMPLIFIED MODEL FOR BELOUSOV-ZHABOTINSKY REACTION
    TOMITA, K
    ITO, A
    OHTA, T
    JOURNAL OF THEORETICAL BIOLOGY, 1977, 68 (04) : 459 - 481
  • [3] Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction
    Hastings, Harold M.
    Sobel, Sabrina G.
    Field, Richard J.
    Bongiovi, Dominick
    Burke, Brianna
    Richford, Daniel
    Finzel, Kara
    Garuthara, Melissa
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (21): : 4715 - 4718
  • [4] ANALYSIS AND SIMPLIFICATION OF THE GTF MODEL OF THE BELOUSOV-ZHABOTINSKY REACTION
    TURANYI, T
    GYORGYI, L
    FIELD, RJ
    JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (09): : 1931 - 1941
  • [5] Traveling waves for a model of the Belousov-Zhabotinsky reaction
    Trofimchuk, Elena
    Pinto, Manuel
    Trofimchuk, Sergei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) : 3690 - 3714
  • [6] A mathematical model for bifurcations in a Belousov-Zhabotinsky reaction
    Chen, G
    PHYSICA D, 2000, 145 (3-4): : 309 - 329
  • [7] Contextualization of the Belousov-Zhabotinsky reaction
    Diaz, Drew
    Crawford, Mary
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [8] Riddled basins in a model for the Belousov-Zhabotinsky reaction
    Woltering, M
    Markus, M
    CHEMICAL PHYSICS LETTERS, 2000, 321 (5-6) : 473 - 478
  • [9] MODEL FOR TEMPORAL OSCILLATIONS IN BELOUSOV-ZHABOTINSKY REACTION
    MURRAY, JD
    JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (09): : 3610 - 3613
  • [10] On the Origin of the Belousov-Zhabotinsky Reaction
    Pechenkin A.
    Biological Theory, 2009, 4 (2) : 196 - 206