Progress towards quantum-enhanced interferometry with harmonically trapped quantum matter-wave bright solitons

被引:4
|
作者
Gertjerenken, Bettina [1 ,2 ]
Wiles, Timothy P. [3 ,4 ]
Weiss, Christoph [3 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[3] Univ Durham, Dept Phys, Joint Quantum Ctr JQC Durham Newcastle, Durham DH1 3LE, England
[4] Peratech, Richmond, England
基金
英国工程与自然科学研究理事会;
关键词
ATOMS; GAS;
D O I
10.1103/PhysRevA.94.053638
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We model the dynamics of attractively interacting ultracold bosonic atoms in a quasi-one-dimensional wave guide with additional harmonic trapping. Initially, we prepare the system in its ground state and then shift the zero of the harmonic trap and switch on an additional narrow scattering potential near the center of the trap. After colliding with the barrier twice, we propose to measure the number of atoms opposite the initial condition. Quantum-enhanced interferometry with quantum bright solitons allows us to predict detection of an offset of the scattering potential with considerably increased precision as compared to single-particle experiments. In a future experimental realization this might lead to measurement of weak forces caused, for example, by small horizontal gradients in the gravitational potential-with a resolution of several micrometers given essentially by the size of the solitons. Our numerical simulations are based on the rigorously proved effective potential approach developed in previous papers [Phys. Rev. Lett. 102, 010403 (2009) and Phys. Rev. Lett. 103, 210402 (2009)]. We choose our parameters such that the prerequisite of the proof (that the solitons cannot break apart, for energetic reasons) is always fulfilled, thus exploring a parameter regime inaccessible to the mean-field description via the Gross-Pitaevskii equation due to Schrodinger-cat states occurring in the many-particle quantum dynamics.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Oscillation properties of matter-wave bright solitons in harmonic potentials
    Guan, Shu-Wen
    Meng, Ling-Zheng
    Zhao, Li-Chen
    CHINESE PHYSICS B, 2022, 31 (08)
  • [32] Quantum-enhanced interferometry and the structure of twisted states
    Gietka, K.
    Szankowski, P.
    Wasak, T.
    Chwedenczuk, J.
    PHYSICAL REVIEW A, 2015, 92 (04)
  • [33] Matter-wave bright solitons in effective bichromatic lattice potentials
    Sekh, Golam Ali
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (02): : 261 - 274
  • [34] Mode engineering for realistic quantum-enhanced interferometry
    Michał Jachura
    Radosław Chrapkiewicz
    Rafał Demkowicz-Dobrzański
    Wojciech Wasilewski
    Konrad Banaszek
    Nature Communications, 7
  • [35] Quantum-enhanced interferometry with weak thermal light
    Rafsanjani, Seyed Mohammad Hashemi
    Mirhosseini, Mohammad
    Magana-Loaiza, Omar S.
    Gard, Bryan T.
    Birrittella, Richard
    Koltenbah, B. E.
    Parazzoli, C. G.
    Capron, Barbara A.
    Gerry, Christopher C.
    Dowling, Jonathan P.
    Boyd, Robert W.
    OPTICA, 2017, 4 (04): : 487 - 491
  • [36] Quantum-enhanced interferometry with asymmetric beam splitters
    Wei Zhong
    Fan Wang
    Lan Zhou
    Peng Xu
    YuBo Sheng
    ScienceChina(Physics,Mechanics&Astronomy), 2020, (06) : 26 - 36
  • [37] Quantum-enhanced interferometry with asymmetric beam splitters
    Wei Zhong
    Fan Wang
    Lan Zhou
    Peng Xu
    YuBo Sheng
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [38] Optimal conventional measurements for quantum-enhanced interferometry
    Zhong, Wei
    Huang, Yixiao
    Wang, Xiaoguang
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [39] Noise-free generation of bright matter-wave solitons
    Edmonds, M. J.
    Billam, T. P.
    Gardiner, S. A.
    Busch, Th
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [40] Mesoscopic quantum superposition states of weakly-coupled matter-wave solitons
    Tsarev, Dmitriy
    Alodjants, Alexander
    Ngo, The Vinh
    Lee, Ray-Kuang
    NEW JOURNAL OF PHYSICS, 2020, 22 (11)