Microscale simulations of reaction and mass transport in cathode catalyst layer of polymer electrolyte fuel cell

被引:12
|
作者
Inoue, Gen [1 ]
Park, Kayoung [1 ]
So, Magnus [1 ]
Kimura, Naoki [1 ]
Tsuge, Yoshifumi [1 ]
机构
[1] Kyushu Univ, Fac Engn, Dept Chem Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
关键词
Polymer electrolyte fuel cells; Catalyst layer; Heterogeneous porous structure; Simulation; Carbon aggregate structure; Current density distribution; GAS-DIFFUSION LAYER; FOCUSED ION-BEAM; OXYGEN REDUCTION; OXIDE COVERAGE; CORROSION BEHAVIORS; CARBON SUPPORT; MODEL; PERFORMANCE; IONOMER; MICROSTRUCTURE;
D O I
10.1016/j.ijhydene.2022.02.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The resistance of the cathode oxygen reduction reaction in polymer electrolyte fuel cells must be reduced for improving the performance. Therefore, it is important to thoroughly understand the relationship between the heterogeneous structures and the cell performance. However, it is difficult to obtain such an understanding using experimental approaches and typical uniform porous simulations. In this study, numerical analysis was used to simulate a three-dimensional catalyst layer (CL) with carbon black (CB) aggregate structures and ionomer coating models, and a cathode reaction and mass transport simulation model incorporating the heterogeneous structure was developed. Moreover, the relationship between the electrode structure and the cell performance, including the reaction distribution and output performance, was examined. The current density distribution depended on the CB structure and ionomer adhesion shape. From the viewpoint of enhancing both the Pt utilization and the mass transport performance, an adequate heterogeneous pore structure in the CL is necessary. These results were used to determine the optimal material properties for the high performance cell.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:12665 / 12683
页数:19
相关论文
共 50 条
  • [21] Effect of flow pulsation on mass transport in a cathode channel of polymer electrolyte membrane fuel cell
    Han, Hun Sik
    Kim, Yun Ho
    Kim, Seo Young
    Hyun, Jae Min
    JOURNAL OF POWER SOURCES, 2012, 213 : 145 - 155
  • [22] Mathematical modelling of the catalyst layer of a polymer electrolyte fuel cell
    Shah, A. A.
    Kim, Gwang-Soo
    Promislow, K.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (03) : 302 - 330
  • [23] Numerical assessment of dependence of polymer electrolyte membrane fuel cell performance on cathode catalyst layer parameters
    Obut, Salih
    Alper, Erdogan
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1920 - 1931
  • [24] Effects of operating conditions on durability of polymer electrolyte membrane fuel cell Pt cathode catalyst layer
    Ohyagi, Shinsuke
    Matsuda, Toshihiko
    Iseki, Yohei
    Sasaki, Tatsuyoshi
    Kaito, Chihiro
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3743 - 3749
  • [25] Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell
    He, Pu
    Mu, Yu-Tong
    Park, Jae Wan
    Tao, Wen-Quan
    APPLIED ENERGY, 2020, 277
  • [26] Probing multiphase reactive transport interactions in the polymer electrolyte fuel cell catalyst layer degradation
    Goswami, Navneet
    Grunewald, Jonathan B.
    Fuller, Thomas F.
    Mukherjee, Partha P.
    ELECTROCHIMICA ACTA, 2024, 486
  • [27] Oxygen Mass Transport Limitations at the Cathode of Polymer Electrolyte Membrane Fuel Cells
    Benziger, Jay
    Kimball, Erin
    Mejia-Ariza, Raquel
    Kevrekidis, Ioannis
    AICHE JOURNAL, 2011, 57 (09) : 2505 - 2517
  • [28] Mass transfer formulation for polymer electrolyte membrane fuel cell cathode
    Beale, Steven B.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (35) : 11641 - 11650
  • [29] Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells
    Xia, Zetao
    Wang, Qianpu
    Eikerling, Michael
    Liu, Zhongsheng
    CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 2008, 86 (07): : 657 - 667
  • [30] Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells
    Gwak, Geonhui
    Lee, Jaeseung
    Ghasemi, Masoomeh
    Choi, Jaeyoo
    Lee, Seung Woo
    Jang, Seung Soon
    Ju, Hyunchul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (24) : 13414 - 13427