Purple sweet potato leaf extracts suppress adipogenic differentiation of human bone marrow-derived mesenchymal stem cells

被引:4
|
作者
Ishii, Masakazu [1 ]
Ikeda, Nao [1 ]
Miyata, Haruka [1 ]
Takahashi, Manami [1 ]
Nishimura, Masahiro [1 ]
机构
[1] Kagoshima Univ, Dept Oral & Maxillofacial Prosthodont, Grad Sch Med & Dent Sci, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
关键词
Akt; anti-adipogenic; GLUT4; mesenchymal stem cells; obesity; purple sweet potato leaf extract; ACTIVATED PROTEIN-KINASE; INFLAMMATORY RESPONSE; ADIPOCYTE; GLUCOSE; ANGIOGENESIS; ANTIOXIDANT; LIPOGENESIS; AMPK;
D O I
10.1111/jfbc.14057
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purple sweet potato (Ipomoea batatas L.) leaf extract (PSPLE) is known to exhibit various biological effects. However, the anti-adipogenic effects of PSPLE on mesenchymal stem cells (MSCs) remain unknown. In the present study, we investigated the effect of PSPLE on the adipogenic differentiation of human bone marrow MSCs. PSPLE treatment significantly reduced lipid accumulation and triglyceride levels during adipogenic differentiation. PSPLE suppressed the expression of PPAR gamma and C/EBP alpha, which are the master transcription factors orchestrating adipogenesis; moreover, it inhibited the expression of adiponectin, adipocyte protein 2 (aP2), and lipoprotein lipase (LPL), which are downstream target genes involved in adipogenic differentiation. Furthermore, PSPLE treatment suppressed glucose transporter 4 expression and intracellular glucose uptake and significantly inhibited the adipogenic differentiation induced factor-stimulated Akt signaling activation. These results indicate that PSPLE suppresses the differentiation of undifferentiated MSCs into adipocyte lineages and inhibits the terminal differentiation from preadipocytes into mature adipocytes. Practical application The increase in the prevalence of obesity worldwide is a problem today. Obesity is induced by an excessive accumulation of adipocytes and causes obesity-related diseases, such as diabetes, hypertension, and hyperlipidemia. Natural compounds derived from plants and fruits have a variety of biological activities and are expected to exert therapeutic effects against various diseases. This study shows that purple sweet potato (Ipomoea batatas L.) leaf extract (PSPLE) suppresses adipogenesis of bone marrow-derived mesenchymal stem cells. Thus, PSPLE may be a novel functional food for controlling obesity.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells
    Lu, ZZ
    Wu, ZZ
    Zhang, QW
    Wang, H
    Jia, XX
    Duan, HF
    Wang, LS
    CHINESE SCIENCE BULLETIN, 2004, 49 (08): : 815 - 818
  • [42] Chemically Functionalized Silk for Human Bone Marrow-Derived Mesenchymal Stem Cells Proliferation and Differentiation
    Zheng, Ke
    Chen, Ying
    Huang, Wenwen
    Lin, Yinan
    Kaplan, David L.
    Fan, Yimin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (23) : 14406 - 14413
  • [43] Inhibitory effect of alcohol on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells
    Gong, ZD
    Wezeman, FH
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2004, 28 (03) : 468 - 479
  • [44] Human bone marrow-derived mesenchymal stem cells: studies on chondrogenic differentiation, chemotaxis and recruitment
    Ringe, J
    Strassburg, S
    Endres, M
    Notter, M
    Haeupl, T
    Manz, R
    Kaps, C
    Sittinger, M
    ARTHRITIS RESEARCH & THERAPY, 2004, 6 (Suppl 1) : S19 - S19
  • [46] Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold
    Matta, Csaba
    Szucs-Somogyi, Csilla
    Kon, Elizaveta
    Robinson, Dror
    Neufeld, Tova
    Altschuler, Nir
    Berta, Agnes
    Hangody, Laszlo
    Vereb, Zoltan
    Zakany, Roza
    DIFFERENTIATION, 2019, 107 : 24 - 34
  • [47] Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells
    Zhou, Haibin
    Zhu, Jinsong
    Liu, Meng
    Wu, Qingyu
    Dong, Ningzheng
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 12 (04) : 973 - 982
  • [48] In Vitro Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Cardiomyocyte-like Cells
    Motamedi, Reihaneh
    Azadbakht, Mehri
    Fathi, Fardin
    Amini, Ali
    Ghaidari, Mohammad Ismail
    Salehi, Ezat
    YAKHTEH, 2010, 12 (03): : 387 - 394
  • [49] Involvement of PP2A methylation in the adipogenic differentiation of bone marrow-derived mesenchymal stem cell
    Ikeda, Shunta
    Tsuji, Shunya
    Ohama, Takashi
    Sato, Koichi
    JOURNAL OF BIOCHEMISTRY, 2020, 168 (06): : 643 - 650
  • [50] Inhibition of osteogenic and adipogenic potential in bone marrow-derived mesenchymal stem cells under osteoporosis
    Huang, Tingben
    Yu, Zhou
    Yu, Qiong
    Wang, Ying
    Jiang, Zhiwei
    Wang, Huiming
    Yang, Guoli
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 525 (04) : 902 - 908