Al nanoantennas for plasmon-enhanced infrared spectroscopy

被引:1
|
作者
Chen, Kai [1 ]
机构
[1] Jinan Univ, Inst Photon Technol, Guangzhou 510632, Guangdong, Peoples R China
来源
PLASMONICS III | 2018年 / 10824卷
关键词
plasmonics; surface-enhanced infrared absorption spectroscopy; optical nanoantenna; colloidal lithography; NANOSPHERE LITHOGRAPHY; PERFECT ABSORBERS; ALUMINUM; FABRICATION; ABSORPTION; ANTENNAS;
D O I
10.1117/12.2501291
中图分类号
O59 [应用物理学];
学科分类号
摘要
The high cost associated with the traditional plasmonic materials and the complex nanofabrication has hindered their practical applications and therefore alternative plasmonic materials and nanofabrication techniques are needed. Here, I combined cost-effective colloidal lithography and earth-abundant element, i.e. Al, to fabricate Al optical nanoantennas including Al nanotriangles and Al metamaterial perfect absorbers. I demonstrate surface functionalization of the nanoantennas using phosphonic acid and subsequent detection of the C=O vibration mode via surface-enhanced infrared absorption spectroscopy. In addition, the detection of a physically adsorbed thin polymer layer on the Al nanoantennas is demonstrated. Surface functionalization with phosphonic acid provides various functional groups to the Al surfaces opening up great opportunities for Al-based plasmonic nanostructures for biochemical sensing applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Statistical Strategy for Quantitative Evaluation of Plasmon-Enhanced Spectroscopy
    Yang, Weimin
    Liang, Miao-Miao
    Sun, Guo-Ya
    Wang, Jingyu
    He, Yonglin
    Qian, Lihua
    Yang, Jing-Liang
    Ren, Pei-Wen
    Gao, Min
    Tian, Zhong-Qun
    Li, Jian-Feng
    Yang, Zhilin
    ACS PHOTONICS, 2022, 9 (05): : 1733 - 1740
  • [32] Biosensors based on surface plasmon-enhanced fluorescence spectroscopy
    Dostalek, Jakub
    Knoll, Wolfgang
    BIOINTERPHASES, 2008, 3 (03) : FD12 - FD22
  • [33] Plasmon-enhanced spectroscopy with shell-isolated mode
    Li, Jian-Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [34] Plasmon-enhanced spectroscopy with shell-isolated mode
    Li, Jian-Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [35] Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
    Xiang Wang
    Sheng-Chao Huang
    Shu Hu
    Sen Yan
    Bin Ren
    Nature Reviews Physics, 2020, 2 : 253 - 271
  • [36] Surface enhanced infrared spectroscopy using gold nanoantennas
    Pucci, A.
    Neubrech, F.
    Weber, D.
    Hong, S.
    Toury, T.
    de la Chapelle, M. Lamy
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (08): : 2071 - 2074
  • [37] From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions
    Zhan, Chao
    Chen, Xue-Jiao
    Yi, Jun
    Li, Jian-Feng
    Wu, De-Yin
    Tian, Zhong-Qun
    NATURE REVIEWS CHEMISTRY, 2018, 2 (09) : 216 - 230
  • [38] From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions
    Chao Zhan
    Xue-Jiao Chen
    Jun Yi
    Jian-Feng Li
    De-Yin Wu
    Zhong-Qun Tian
    Nature Reviews Chemistry, 2018, 2 : 216 - 230
  • [39] Plasmon-enhanced chemistry
    Schatz, George
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [40] Designing graphene absorption in a multispectral plasmon-enhanced infrared detector
    Goldflam, Michael D.
    Fei, Zhe
    Ruiz, Isaac
    Howell, Stephen W.
    Davids, Paul S.
    Peters, David W.
    Beechem, Thomas E.
    OPTICS EXPRESS, 2017, 25 (11): : 12400 - 12408