The Authentication System for Multi-modal Behavior Biometrics Using Concurrent Pareto Learning SOM

被引:0
|
作者
Dozono, Hiroshi [1 ]
Ito, Shinsuke [1 ]
Nakakuni, Masanori [2 ]
机构
[1] Saga Univ, Fac Sci & Engn, 1-Honjyo, Saga 8408502, Japan
[2] Fukuoka Univ, Ctr Informat Technol, Fukuoka 8140180, Japan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We have proposed the integration of behavior biometrics using Supervised Pareto learning SOM to improve the accuracy of authentication. For small systems such as mobile devices, this method may be heavy, because of the memory usage or computational power. In this paper, we propose the application of Concurrent Pareto learning SOM, which uses a small map for each user. The performance of this method is confirmed by authentication experiments using behavior biometrics of keystroke timings and key typing sounds.
引用
收藏
页码:197 / +
页数:2
相关论文
共 50 条
  • [21] FPCODE: AN EFFICIENT APPROACH FOR MULTI-MODAL BIOMETRICS
    Shen, Linlin
    Bai, Li
    Ji, Zhen
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (02) : 273 - 286
  • [22] A case study on multi-modal biometrics in the cloud
    Emeršič, Žiga
    Bule, Jernej
    Žganec-Gros, Jerneja
    Štruc, Vitomir
    Peer, Peter
    Elektrotehniski Vestnik/Electrotechnical Review, 2014, 81 (03): : 74 - 80
  • [23] Multi-modal biometrics involving the human ear
    Middendorff, Christopher
    Bowyer, Kevin W.
    Yan, Ping
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3905 - +
  • [24] A case study on multi-modal biometrics in the cloud
    Emersic, Z.
    Bule, J.
    Zganec-Gros, J.
    Struc, V
    Peer, P.
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2014, 81 (03): : 74 - 80
  • [25] An advanced multi-modal method for human authentication featuring biometrics data and tokenised random numbers
    Lumini, Alessandra
    Nanni, Loris
    NEUROCOMPUTING, 2006, 69 (13-15) : 1706 - 1710
  • [26] Design of E-Invigilation Framework Using Multi-Modal Biometrics
    Iwasokun, Gabriel Babatunde
    Akinyokun, Oluwole Charles
    Omomule, Taiwo Gabriel
    2019 15TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2019,
  • [27] Abnormal Behavior Detection using a Multi-Modal Stochastic Learning Approach
    Bouttefroy, P. L. M.
    Bouzerdoum, A.
    Phung, S. L.
    Beghdadi, A.
    ISSNIP 2008: PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS, AND INFORMATION PROCESSING, 2008, : 121 - +
  • [28] Evaluating multi-modal mobile behavioral biometrics using public datasets
    Ray-Dowling, Aratrika
    Hou, Daqing
    Schuckers, Stephanie
    Barbir, Abbie
    COMPUTERS & SECURITY, 2022, 121
  • [29] Continuous identity authentication using multi-modal physiological sensors
    Crosby, ME
    Ikehara, CS
    BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION, 2004, 5404 : 393 - 400
  • [30] Multi-modal anchor adaptation learning for multi-modal summarization
    Chen, Zhongfeng
    Lu, Zhenyu
    Rong, Huan
    Zhao, Chuanjun
    Xu, Fan
    NEUROCOMPUTING, 2024, 570