Donaldson invariants of product ruled surfaces and two-dimensional gauge theories

被引:9
|
作者
Lozano, C [1 ]
Mariño, M
机构
[1] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela 15706, Spain
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
关键词
D O I
10.1007/s002200100442
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the u-plane integral of Moore and Witten, we derive a simple expression for the Donaldson invariants of product ruled surfaces Sigma (g) x S-2, where Sigma (g) is a Riemann surface of genus g. This expression generalizes a theorem of Morgan and Szabo for g = 1 to any genus g. We give two applications of our results: (1) We derive Thaddeus' formulae for the intersection pairings on the moduli space of rank two stable bundles over a Riemann surface. (2) We derive the eigenvalue spectrum of the Fukaya-Floer cohomology of Sigma (g) x S-1.
引用
收藏
页码:231 / 261
页数:31
相关论文
共 50 条