Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water

被引:68
|
作者
van Swaay, Dirk [1 ]
Tang, T. -Y. Dora [2 ]
Mann, Stephen [2 ]
de Mello, Andrew [1 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
[2] Univ Bristol, Ctr Protolife Res, Ctr Organized Matter, Sch Chem, Bristol BS8 1TS, Avon, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 欧洲研究理事会;
关键词
coacervate; microfluidics; microreactors; polymers; protocells; COMPLEX COACERVATION; ARTIFICIAL CELLS; EXTRACELLULAR ENVIRONMENT; PROTOCELL MODELS; BREAKUP; MICRODROPLETS; EVOLUTION; PROSPECTS; VESICLES; DEVICE;
D O I
10.1002/anie.201502886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the formation of coacervate droplets from poly(diallyldimethylammonium chloride) with either adenosine triphosphate or carboxymethyl-dextran using a microfluidic flow-focusing system. The formed droplets exhibit improved stability and narrower size distributions for both coacervate compositions when compared to the conventional vortex dispersion techniques. We also demonstrate the use of two parallel flow-focusing channels for the simultaneous formation and co-location of two distinct populations of coacervate droplets containing different DNA oligonucleotides, and that the populations can coexist in close proximity up to 48h without detectable exchange of genetic information. Our results show that the observed improvements in droplet stability and size distribution may be scaled with ease. In addition, the ability to encapsulate different materials into coacervate droplets using a microfluidic channel structure allows for their use as cell-mimicking compartments.
引用
收藏
页码:8398 / 8401
页数:4
相关论文
共 50 条
  • [11] A membrane-free, aqueous/nonaqueous hybrid redox flow battery
    Wang, Xiao
    Lashgari, Amir
    Chai, Jingchao
    Jiang, Jianbing Jimmy
    ENERGY STORAGE MATERIALS, 2022, 45 : 1100 - 1108
  • [12] Decoupled supercapacitive electrolyzer for membrane-free water splitting
    Toledo-Carrillo, Esteban A.
    Garcia-Rodriguez, Mario
    Sanchez-Moren, Lorena M.
    Dutta, Joydeep
    SCIENCE ADVANCES, 2024, 10 (10)
  • [13] Membrane-free microplastic removal based on a multiplexed spiral inertial microfluidic system
    Jeon, Hyungkook
    Yoon, Junghyo
    Han, Jongyoon
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [14] Uricase-containing coacervate microdroplets as enzyme active membrane-free protocells for detoxification of uric acid in serum
    Zhuang, Miaomiao
    Zhang, Yanwen
    Zhou, Shaohong
    Zhang, Yun
    Wang, Kemin
    Nie, Jinfang
    Liu, Jianbo
    CHEMICAL COMMUNICATIONS, 2019, 55 (92) : 13880 - 13883
  • [15] A Triphasic Membrane-Free Redox Flow Battery in a Total Aqueous System
    Liu, Junjie
    Deng, Jintao
    Hua, Yutong
    Liu, Chang
    Zhang, Xianhao
    Li, Meixian
    Shao, Yuanhua
    ACS APPLIED ENERGY MATERIALS, 2024, : 12131 - 12140
  • [16] Membrane-free electroextraction using an aqueous two-phase system
    Campos, C. D. M.
    Park, J. K.
    Neuzil, P.
    da Silva, J. A. F.
    Manz, A.
    RSC ADVANCES, 2014, 4 (90) : 49485 - 49490
  • [17] Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost
    Gao, Xintong
    Wang, Pengtang
    Sun, Xiaogang
    Jaroniec, Mietek
    Zheng, Yao
    Qiao, Shi-Zhang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (06)
  • [18] A membrane-free cation selective water-gated transistor
    Althagafi, Talal M.
    Al Baroot, Abbad F.
    Algarni, Saud A.
    Grell, Martin
    ANALYST, 2016, 141 (19) : 5571 - 5576
  • [19] Desalination of water with high conductivity using membrane-free electrodeionization
    Shen, Xiaolan
    Li, Tianjun
    Jiang, Xiaping
    Chen, Xueming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 128 : 39 - 44
  • [20] Bromine-mediated membrane-free electrooxidation reactions in water
    Gao, Ying
    Zhang, Bin
    SCIENCE BULLETIN, 2024, 69 (11) : 1595 - 1597