Electronic Properties of Armchair MoS2 Nanoribbons with Stacking Faults: First-Principles Calculations

被引:0
|
作者
Xu, Weiwei [1 ]
Wang, Jianwei [2 ]
Laref, Amel [3 ]
Yang, Juan [4 ]
Wu, Xiaozhi [1 ]
Wang, Rui [1 ]
机构
[1] Chongqing Univ, Inst Struct & Funct, Chongqing 401331, Peoples R China
[2] CAEP, Microsyst & Terahertz Res Ctr, Microsyst Technol Lab, Chengdu 610200, Sichuan, Peoples R China
[3] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[4] Chongqing Jiaotong Univ, Coll Mat Sci & Engn, Chongqing 402247, Peoples R China
关键词
Molybdenum disulfide; nanoribbon; stacking fault; band structure; HEXAGONAL BORON-NITRIDE; EXTENDED LINE DEFECTS; MONOLAYER MOS2; GRAPHENE; PHOTOLUMINESCENCE; LAYERS; GAN;
D O I
10.1007/s11664-018-6445-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The band structures and partial charge densities of armchair MoS2 with and without stacking fault have been investigated using first-principles calculations. The band gaps of MoS2 with periodically arranged stacking fault increase with the decreasing of stacking fault density and converge to 0.27 eV, which is smaller than perfect MoS2 (1.76 eV). For MoS2 nanoribbons with stacking fault, the band gap increases for ribbon width L <= 18 and decreases slightly for L >= 18: The band gaps are smaller than that of MoS2 nanoribbons without stacking fault. The partial charge densities of armchair MoS2 nanoribbons with stacking fault are also presented. Results indicate that the defect levels originate from the stacking fault and are located in the forbidden band near the Fermi level. Therefore, the band gaps can be decreased by stacking fault.
引用
收藏
页码:5498 / 5508
页数:11
相关论文
共 50 条
  • [21] Electronic properties of germanene on pristine and defective MoS2: A first-principles study
    Lv, Pengfei
    Silva-Guillen, Jose Angel
    Rudenko, Alexander N.
    Yuan, Shengjun
    PHYSICAL REVIEW B, 2022, 105 (09)
  • [22] Tunable Electronic Properties of MoS2/SiC Heterostructures: A First-Principles Study
    Shu Liu
    Xiaodan Li
    Dongping Meng
    Shenghao Li
    Xiong Chen
    Taotao Hu
    Journal of Electronic Materials, 2022, 51 : 3714 - 3726
  • [23] First-Principles Study of Electronic Structure, Vibrational and Dielectric Properties of MoS2
    Chen Jichao
    Liu Zhengtang
    Feng Liping
    Tan Tingting
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (01) : 118 - 121
  • [24] Tunable Electronic Properties of MoS2/SiC Heterostructures: A First-Principles Study
    Liu, Shu
    Li, Xiaodan
    Meng, Dongping
    Li, Shenghao
    Chen, Xiong
    Hu, Taotao
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (07) : 3714 - 3726
  • [25] Tunable electronic properties of the GeC/MoS2 heterostructures: A first-principles study
    Meng, Dongping
    Li, Xiaodan
    Liu, Shu
    Zhang, Haoyang
    Ruan, Shihao
    Hu, Taotao
    SOLID STATE COMMUNICATIONS, 2022, 345
  • [26] First-principles study of the structural and electronic properties of graphene/MoS2 interfaces
    Nguyen Ngoc Hieu
    Huynh Vinh Phuc
    Ilyasov, Victor V.
    Chien, Nguyen D.
    Poklonski, Nikolai A.
    Nguyen Van Hieu
    Nguyen, Chuong V.
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (10)
  • [27] First-principles investigation of armchair stanene nanoribbons
    Fadaie, M.
    Shahtahmassebi, N.
    Roknabad, M. R.
    Gulseren, O.
    PHYSICS LETTERS A, 2018, 382 (04) : 180 - 185
  • [28] Lattice structures and electronic properties of WZ-CuInS2/MoS2 interface from first-principles calculations
    Liu, Hong-Xia
    Tang, Fu-Ling
    Xue, Hong-Tao
    Zhang, Yu
    Feng, Yu-Dong
    APPLIED SURFACE SCIENCE, 2015, 351 : 382 - 391
  • [29] Structural, mechanical and thermal properties of twisted bilayer MoS2: First-principles calculations
    Ren, Yiming
    He, Junrong
    Hu, Zhenglong
    Hu, Yonghong
    Hua, Chunbo
    Xue, Li
    VACUUM, 2025, 235
  • [30] First-principles calculations of Pd-terminated symmetrical armchair graphene nanoribbons
    Kuloglu, A. F.
    Sarikavak-Lisesivdin, B.
    Lisesivdin, S. B.
    Ozbay, E.
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 : 18 - 22