Electronic Properties of Armchair MoS2 Nanoribbons with Stacking Faults: First-Principles Calculations

被引:0
|
作者
Xu, Weiwei [1 ]
Wang, Jianwei [2 ]
Laref, Amel [3 ]
Yang, Juan [4 ]
Wu, Xiaozhi [1 ]
Wang, Rui [1 ]
机构
[1] Chongqing Univ, Inst Struct & Funct, Chongqing 401331, Peoples R China
[2] CAEP, Microsyst & Terahertz Res Ctr, Microsyst Technol Lab, Chengdu 610200, Sichuan, Peoples R China
[3] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[4] Chongqing Jiaotong Univ, Coll Mat Sci & Engn, Chongqing 402247, Peoples R China
关键词
Molybdenum disulfide; nanoribbon; stacking fault; band structure; HEXAGONAL BORON-NITRIDE; EXTENDED LINE DEFECTS; MONOLAYER MOS2; GRAPHENE; PHOTOLUMINESCENCE; LAYERS; GAN;
D O I
10.1007/s11664-018-6445-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The band structures and partial charge densities of armchair MoS2 with and without stacking fault have been investigated using first-principles calculations. The band gaps of MoS2 with periodically arranged stacking fault increase with the decreasing of stacking fault density and converge to 0.27 eV, which is smaller than perfect MoS2 (1.76 eV). For MoS2 nanoribbons with stacking fault, the band gap increases for ribbon width L <= 18 and decreases slightly for L >= 18: The band gaps are smaller than that of MoS2 nanoribbons without stacking fault. The partial charge densities of armchair MoS2 nanoribbons with stacking fault are also presented. Results indicate that the defect levels originate from the stacking fault and are located in the forbidden band near the Fermi level. Therefore, the band gaps can be decreased by stacking fault.
引用
收藏
页码:5498 / 5508
页数:11
相关论文
共 50 条
  • [1] First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons
    Shao Yan
    Ouyang Fang-Ping
    Peng Sheng-Lin
    Liu Qi
    Jia Zhi-An
    Zou Hui
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (11) : 2083 - 2090
  • [2] Effects of Multiple Stacking Faults on the Electronic and Optical Properties of Armchair MoS2 Nanoribbons: First- Principles Calculations
    Xu, Weiwei
    Wang, Jianwei
    Laref, Amel
    Wang, Rui
    Wu, Xiaozhi
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (12) : 7114 - 7128
  • [3] Effects of Stone–Wales Defect on the Electronic and Optical Properties of Armchair MoS2 Nanoribbon: First-Principles Calculations
    Weiwei Xu
    Wangping Xu
    Fangyang Zhan
    Amel Laref
    Rui Wang
    Xiaozhi Wu
    Journal of Electronic Materials, 2019, 48 : 3763 - 3776
  • [4] Effects of Stone-Wales Defect on the Electronic and Optical Properties of Armchair MoS2 Nanoribbon: First-Principles Calculations
    Xu, Weiwei
    Xu, Wangping
    Zhan, Fangyang
    Laref, Amel
    Wang, Rui
    Wu, Xiaozhi
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (06) : 3763 - 3776
  • [5] Electronic and magnetic properties of armchair MoS2 nanoribbons under both external strain and electric field, studied by first principles calculations
    Hu, Ting
    Zhou, Jian
    Dong, Jinming
    Kawazoe, Yoshiyuki
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (06)
  • [6] Electronic and optical properties of GaN–MoS2 heterostructure from first-principles calculations
    任达华
    谭兴毅
    张腾
    张源
    Chinese Physics B, 2019, (08) : 258 - 261
  • [7] Structural and Electronic Properties in Monolayer MoS2 with Various Vacancies: First-Principles Calculations
    Bai, Zhi-Xin
    Lu, Fan-Jin
    Liu, Qi-Jun
    Liu, Zheng-Tang
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2024, 79 (04) : 500 - 506
  • [8] First-principles study on structural and electronic properties of the armchair GaN nanoribbons
    Chen, GuoXiang
    Wang, DouDou
    ADVANCED RESEARCH ON INFORMATION SCIENCE, AUTOMATION AND MATERIAL SYSTEMS III, 2013, 703 : 67 - +
  • [9] Analytical study of the electronic and optical properties of the armchair MoS2 nanoribbons
    Nayeri, Maryam
    Fathipour, Morteza
    PHYSICA B-CONDENSED MATTER, 2020, 594
  • [10] The Electronic Properties of Ultra-narrow Armchair MoS2 Nanoribbons
    Xin, Zheng
    Zeng, Lang
    Lu, Ziqing
    Hou, Yi
    Liu, Lifeng
    Kang, Jinfeng
    Du, Gang
    Liu, Xiaoyan
    2013 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2013,