Sedimentation of Fractal Aggregates in Shear-Thinning Fluids

被引:5
|
作者
Trofa, Marco [1 ]
D'Avino, Gaetano [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Ingn Chim Mat & Prod Ind, Piazza Giorgio Ascarelli 80, I-80125 Naples, Italy
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 09期
关键词
sedimentation; drag; fractal aggregates; shear-thinning; non-Newtonian fluids; suspensions; numerical simulations; HYDRODYNAMIC PROPERTIES; LATTICE BOLTZMANN; SIMULATION; DRAG; SPHERE; MODEL; FLOW; INTERPOLATION; FLOCCULATION; ALGORITHMS;
D O I
10.3390/app10093267
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-liquid separation is a key unit operation in the wastewater treatment, generally consisting of coagulation and flocculation steps to promote aggregation and increase the particle size, followed by sedimentation, where the particles settle due to the effect of gravity. The sedimentation efficiency is related to the hydrodynamic behavior of the suspended particles that, in turn, depends on the aggregate morphology. In addition, the non-Newtonian rheology of sludges strongly affects the drag coefficient of the suspended particles, leading to deviations from the known settling behavior in Newtonian fluids. In this work, we use direct numerical simulations to study the hydrodynamic drag of fractal-shaped particles suspended in a shear-thinning fluid modeled by the power-law constitutive equation. The fluid dynamics governing equations are solved for an applied force with different orientations uniformly distributed over the unit sphere. The resulting particle velocities are interpolated to compute the aggregate dynamics and the drag correction coefficient. A remarkable effect of the detailed microstructure of the aggregate on the sedimentation process is observed. The orientational dynamics shows a rich behavior characterized by steady-state, bistable, and periodic regimes. In qualitative agreement with spherical particles, shear-thinning increases the drag correction coefficient. Elongated aggregates sediment more slowly than sphere-like particles, with a lower terminal velocity as the aspect ratio increases.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [31] Inertial separation of microparticles suspended in shear-thinning fluids
    Shiriny, Afshin
    Bayareh, Morteza
    Usefian, Azam
    CHEMICAL PAPERS, 2022, 76 (07) : 4341 - 4350
  • [32] On the convergence rate of the Kacanov scheme for shear-thinning fluids
    Heid, Pascal
    Suli, Endre
    CALCOLO, 2022, 59 (01)
  • [33] Instability of streaks in pipe flow of shear-thinning fluids
    Carranza, S. N. Lopez
    Jenny, M.
    Nouar, C.
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [34] Taylor-Couette flow of shear-thinning fluids
    Cagney, N.
    Balabani, S.
    PHYSICS OF FLUIDS, 2019, 31 (05)
  • [35] Close-contact melting of shear-thinning fluids
    Hu, Nan
    Fan, Li-Wu
    JOURNAL OF FLUID MECHANICS, 2023, 968
  • [36] Effect of Surfactants on Gas Holdup in Shear-Thinning Fluids
    Li, Shaobai
    Huang, Siyuan
    Fan, Jungeng
    INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING, 2017, 2017
  • [37] Asymptotic analysis of die flow for shear-thinning fluids
    Weinstein, SJ
    Ruschak, KJ
    AICHE JOURNAL, 1996, 42 (06) : 1501 - 1513
  • [38] Regularity of flows and optimal control of shear-thinning fluids
    Arada, Nadir
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 : 81 - 94
  • [39] Flow of shear-thinning fluids through porous media
    Airiau, Christophe
    Bottaro, Alessandro
    ADVANCES IN WATER RESOURCES, 2020, 143
  • [40] Pairwise interaction of drops in shear-thinning inelastic fluids
    Sadegh Mohammadi Masiri
    Morteza Bayareh
    Afshin Ahmadi Nadooshan
    Korea-Australia Rheology Journal, 2019, 31 : 25 - 34