Uniqueness of density-to-potential mapping for fermionic lattice systems

被引:15
|
作者
Coe, J. P. [1 ]
D'Amico, I. [2 ]
Franca, V. V. [3 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[3] Sao Paulo State Univ, Inst Chem, Araraquara, Brazil
基金
巴西圣保罗研究基金会;
关键词
FUNCTIONAL THEORY; MODEL; ENTANGLEMENT; PARTICLE;
D O I
10.1209/0295-5075/110/63001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that, for a fermionic lattice system, the ground-state particle density uniquely determines the external potential except for the sites corresponding to nodes of the wave function, and the limiting case where the Pauli exclusion principle completely determines the occupation of all sites. Our fundamental finding completes, for this general class of systems, the one-to-one correspondence between ground states, their densities, and the external potential at the base of the Hohenberg-Kohn theorem. Moreover we demonstrate that the mapping from wave function to potential is unique not just for the ground state, but also for excited states. To illustrate our findings, we develop a practical inversion scheme to determine the external potential from a given density. Our results hold for a general class of lattice models, which includes the Hubbard model. Copyright (C) EPLA, 2015
引用
收藏
页数:5
相关论文
共 50 条
  • [21] TODA LATTICE AS AN INTEGRABLE SYSTEM AND UNIQUENESS OF TODAS POTENTIAL
    SAWADA, K
    KOTERA, T
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1976, (59): : 101 - 106
  • [22] Density-matrix spectra of solvable fermionic systems
    Chung, MC
    Peschel, I
    PHYSICAL REVIEW B, 2001, 64 (06)
  • [23] Semiclassical theory for spatial density oscillations in fermionic systems
    Roccia, J.
    Brack, M.
    Koch, A.
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [24] Uniqueness Problem for Quantum Lattice Systems with Compact Spins
    S. Albeverio
    Yu. G. Kondratiev
    R. A. Minlos
    G. V. Shchepan'uk
    Letters in Mathematical Physics, 2000, 52 : 185 - 195
  • [25] Gaussian Concentration and Uniqueness of Equilibrium States in Lattice Systems
    J.-R. Chazottes
    J. Moles
    F. Redig
    E. Ugalde
    Journal of Statistical Physics, 2020, 181 : 2131 - 2149
  • [26] Uniqueness problem for quantum lattice systems with compact spins
    Albeverio, S
    Kondratiev, YG
    Minlos, RA
    Shchepan'uk, GV
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 52 (03) : 185 - 195
  • [27] Gaussian Concentration and Uniqueness of Equilibrium States in Lattice Systems
    Chazottes, J. -R.
    Moles, J.
    Redig, F.
    Ugalde, E.
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (06) : 2131 - 2149
  • [28] Superfluidity and magnetism in two-dimensional fermionic optical lattice systems
    Fujihara, Yusuke
    Koga, Akihisa
    Kawakami, Norio
    PHYSICA B-CONDENSED MATTER, 2009, 404 (19) : 3324 - 3327
  • [29] Variational Monte Carlo analysis of Hubbard model with confining potential: One-dimensional fermionic optical lattice systems
    Fujihara, Yusuke
    Koga, Akihisa
    Kawakami, Norio
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (03)
  • [30] UNIQUENESS OF THE STOCHASTIC DYNAMICS FOR CONTINUOUS-SPIN SYSTEMS ON A LATTICE
    ALBEVERIO, S
    KONDRATIEV, YG
    ROCKNER, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) : 10 - 20