Rogue Waves of the Vector Nonlinear Schrodinger Equations

被引:0
|
作者
Baronio, F. [1 ]
Conforti, M. [1 ]
Wabnitz, S. [1 ]
Degasperis, A. [2 ,3 ]
机构
[1] Univ Brescia, I-25123 Brescia, Italy
[2] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, I-00185 Rome, Italy
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrodinger Equations in Nonlinear Optics
    Chen, Su-Su
    Tian, Bo
    Sun, Yan
    Zhang, Chen-Rong
    ANNALEN DER PHYSIK, 2019, 531 (08)
  • [42] Breathers, rogue waves and breather-rogue waves on a periodic background for the modified nonlinear Schrodinger equation
    Wu, Qing-Lin
    Zhang, Hai-Qiang
    WAVE MOTION, 2022, 110
  • [43] Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation
    Guo, Ya-Hui
    Zuo, Da-Wei
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [44] Rogue waves for an inhomogeneous discrete nonlinear Schrodinger equation in a lattice
    Wu, Xiao-Yu
    Tian, Bo
    Du, Zhong
    Du, Xia-Xia
    MODERN PHYSICS LETTERS B, 2019, 33 (08):
  • [45] Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Kaur, Harleen
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [46] Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation
    Bertola, Marco
    El, Gennady A.
    Tovbis, Alexander
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194):
  • [47] Rogue waves of the nonlinear Schrodinger equation with even symmetric perturbations
    Ankiewicz, Adrian
    Chowdhury, Amdad
    Devine, Natasha
    Akhmediev, Nail
    JOURNAL OF OPTICS, 2013, 15 (06)
  • [48] Simple determinant representation for rogue waves of the nonlinear Schrodinger equation
    Ling, Liming
    Zhao, Li-Chen
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [49] The manipulation of optical rogue waves for the nonautonomous nonlinear Schrodinger equation
    Dai, Chao-Qing
    Zhu, Hai-Ping
    CANADIAN JOURNAL OF PHYSICS, 2012, 90 (04) : 359 - 364
  • [50] Generation mechanism of rogue waves for the discrete nonlinear Schrodinger equation
    Li, Min
    Shui, Juan-Juan
    Xu, Tao
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 110 - 115