Electronically phase-separated charge-density waves in Lu2Ir3Si5

被引:24
|
作者
Lee, M. H. [1 ]
Chen, C. H. [1 ,2 ,3 ]
Chu, M. -W. [2 ]
Lue, C. S. [4 ]
Kuo, Y. K. [5 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan
[2] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10764, Taiwan
[3] Acad Sinica, Inst Atom & Mol Sci, Taipei, Taiwan
[4] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[5] Natl Dong Hua Univ, Dept Phys, Hualien, Taiwan
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 15期
关键词
MIXED-VALENT MANGANITES; TRANSITION; INCOMMENSURATE; COMMENSURATE; 2H-TASE2; DISCOMMENSURATIONS; MAGNETORESISTANCE; LA0.5CA0.5MNO3; STRIPES;
D O I
10.1103/PhysRevB.83.155121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the investigation of charge density waves (CDW's) in Lu2Ir3Si5 by electron diffraction and dark-field imaging in transmission electron microscopy using superlattice diffraction spots. The CDW state is confirmed by the presence of superlattice reflections. Most interestingly, the CDW state at low temperatures is found to be electronically phase separated, with the coexistence of CDW domains and low-temperature normal phase domains. With a change in temperature, unlike other typical incommensurate CDW systems in which commensurability varies with temperature, we find that commensurability remains unchanged in the present case and that the predominant change is in the redistribution of the area ratio of the two coexisting phases, which is clearly revealed in the dark-field images obtained from the CDW superlattice reflections. The electronic phase separation in the CDW state of Lu2Ir3Si5 is unprecedented in CDW systems, and its temperature dependence is also anomalous.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] REAL SPACE OBSERVATION OF CHARGE-DENSITY WAVES IN THE INCOMMENSURATE ROOM-TEMPERATURE PHASE OF TAS2
    VANTENDELOO, G
    VANLANDUYT, J
    AMELINCKX, S
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1981, 64 (02): : K105 - &
  • [32] Lu5Ir4Si10 whiskers: Morphology, crystal structure, superconducting and charge density wave transition studies
    Opagiste, C.
    Leroux, M.
    Rodiere, P.
    Garbarino, G.
    Pairis, S.
    Bordet, P.
    Lejay, P.
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (21) : 3204 - 3208
  • [33] NMR MEASUREMENT OF DRIFT VELOCITY AND PHASE FLUCTUATIONS OF SLIDING CHARGE-DENSITY WAVES IN RB0.3MOO3
    BUTAUD, P
    JANOSSY, A
    SEGRANSAN, P
    BERTHIER, C
    SYNTHETIC METALS, 1989, 29 (2-3) : F499 - F510
  • [34] PHASE-SEPARATION, CHARGE-DENSITY WAVES, AND MAGNETISM IN LA2NIO4+DELTA WITH DELTA = 0.105
    TRANQUADA, JM
    BUTTREY, DJ
    RICE, DE
    PHYSICAL REVIEW LETTERS, 1993, 70 (04) : 445 - 448
  • [35] X-RAY-SCATTERING OBSERVATION OF 2 INDEPENDENT, INCOMMENSURATE CHARGE-DENSITY WAVES IN NBSE3
    FLEMING, RM
    MONCTON, DE
    MCWHAN, DB
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 425 - 425
  • [36] FORMATION OF THE CHARGE-DENSITY WAVES IN THE BETA-TYPE OXIDE VANADIUM BRONZES NAXV2O5
    DMITRIEV, AV
    ZHURAVLEV, NA
    VOLKOV, VL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (09): : 1491 - 1503
  • [37] Splitting of the Ti-3d bands of TiSe2 in the charge-density wave phase
    Ghafari, A.
    Petaccia, L.
    Janowitz, C.
    APPLIED SURFACE SCIENCE, 2017, 396 : 1649 - 1656
  • [38] Hexagonal phase with mosaic structure of charge-density waves observed by scanning tunneling microscopy at the surface of a NbSe3 crystal
    Altfeder, IB
    ZaitsevZotov, SV
    PHYSICAL REVIEW B, 1996, 54 (11): : 7694 - 7696
  • [39] INTERPLAY BETWEEN CHARGE-DENSITY WAVES AND REENTRANT SUPERCONDUCTIVITY IN THE PRESSURE TEMPERATURE PHASE-DIAGRAM OF TTF(NI(DMIT)2)2
    BROSSARD, L
    RIBAULT, M
    CANADELL, E
    VALADE, L
    LEGROS, JP
    SYNTHETIC METALS, 1991, 43 (03) : 3841 - 3844
  • [40] Coupling of rare earth moment and charge density wave ordering in a single crystal Er2Ir3Si5
    Lalngilneia, P. C.
    Thamizhavel, A.
    Ramakrishnan, S.
    Pal, D.
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS 2014 (SCES2014), 2015, 592