DyNMF: Role Analytics in Dynamic Social Networks

被引:0
|
作者
Pei, Yulong [1 ]
Zhang, Jianpeng [1 ]
Fletcher, George [1 ]
Pechenizkiy, Mykola [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
来源
PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Roles of nodes in a social network (SN) represent their functions, responsibilities or behaviors within the SN. Roles typically evolve over time, making role analytics a challenging problem. Previous studies either neglect role transition analysis or perform role discovery and role transition learning separately, leading to inefficiencies and limited transition analysis. We propose a novel dynamic non-negative matrix factorization (DyNMF) approach to simultaneously discover roles and learn role transitions. DyNMF explicitly models temporal information by introducing a role transition matrix and clusters nodes in SNs from two views: the current view and the historical view. The current view captures structural information from the current SN snapshot and the historical view captures role transitions by looking at roles in past SN snapshots. DyNMF efficiently provides more effective analytics capabilities, regularizing roles by temporal smoothness of role transitions and reducing uncertainties and inconsistencies between snapshots. Experiments on both synthetic and real-world SNs demonstrate the advantages of DyNMF in discovering and predicting roles and role transitions.
引用
收藏
页码:3818 / 3824
页数:7
相关论文
共 50 条
  • [41] AcaVis: A Visual Analytics Framework for Exploring Evolution of Dynamic Academic Networks
    Lu, Qiang
    Wen, Dajiu
    Huang, Wenjiao
    Lin, Tianyue
    Ma, Cheng
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II, 2022, 1492 : 499 - 511
  • [42] A hybrid visual analytics approach to dynamic space-based networks
    Hu Huaquan
    Song Hanchen
    Wu Lingda
    Yu Ronghuan
    2014 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV2014), 2014, : 130 - 137
  • [43] The role of social networks for careers
    Barthauer, Luisa
    Kauffeld, Simone
    GIO-GRUPPE-INTERAKTION-ORGANISATION-ZEITSCHRIFT FUER ANGEWANDTE ORGANISATIONSPSYCHOLOGIE, 2018, 49 (01): : 50 - 57
  • [44] Social Networks: Their Role in Fisheries
    Fisher, Bill
    FISHERIES, 2012, 37 (06) : 243 - 243
  • [45] The role of museums in the social networks
    Forteza Oliver, Miquela
    BIBLIOS-REVISTA DE BIBLIOTECOLOGIA Y CIENCIAS DE LA INFORMACION, 2012, (48): : 31 - 40
  • [46] Evolution of Social Power in Social Networks With Dynamic Topology
    Ye, Mengbin
    Liu, Ji
    Anderson, Brian D. O.
    Yu, Changbin
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (11) : 3793 - 3808
  • [47] Modeling multidirectional, dynamic social influences in social networks
    Van Rooy, D.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 2962 - 2968
  • [48] Fundamental structures of dynamic social networks
    Sekara, Vedran
    Stopczynski, Arkadiusz
    Lehmann, Sune
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (36) : 9977 - 9982
  • [49] Tracking Communities in Dynamic Social Networks
    Xu, Kevin S.
    Kliger, Mark
    Hero, Alfred O., III
    SOCIAL COMPUTING, BEHAVIORAL-CULTURAL MODELING AND PREDICTION, 2011, 6589 : 219 - +
  • [50] Temporal fidelity in dynamic social networks
    Arkadiusz Stopczynski
    Piotr Sapiezynski
    Alex ‘Sandy’ Pentland
    Sune Lehmann
    The European Physical Journal B, 2015, 88