Simulation of the Electronic Structure of Simple Oxides BeO and SiO2 and Complex Oxides Be2SiO4 and Be2SixGe1-xO4 with the Phenacite Structure

被引:2
|
作者
Mazurenko, V. V. [1 ]
Rudenko, A. N. [1 ]
Kvashnin, Ya. O. [1 ]
Mazurenko, V. G. [1 ]
Novoselov, Yu. N. [2 ]
Pustovarov, V. A. [1 ]
Kukharenko, A. I. [1 ]
Cholakh, S. O. [1 ]
机构
[1] Ural State Tech Univ, Ekaterinburg 620002, Russia
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
关键词
AUGMENTED-WAVE METHOD; ALPHA-ALUMINA; BAND-STRUCTURE; 0001; FACE; EXCITATIONS; DIFFRACTION; CRYSTALS;
D O I
10.1134/S1063776111040194
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ab initio numerical calculations of the electronic structure of simple oxides BeO and SiO2 and complex oxides Be2SiO4 and Be2SixGe1-xO4 with the phenacite structure have been performed using the electron density functional theory. The calculations indicate that the main feature of the systems under investigation is the presence of oxygen states in both the valence and conduction bands. The splitting of the bottom of the conduction band has been revealed in the electronic structure of the Be2SixGe1-xO4 system. The splitting width is about 1.5 eV. The main contribution to the formation of a narrow subband of the conduction band comes from the 2s and 2p states of oxygen and the 4d state of germanium. Microscopic models of the spatial localization of the electron density on lower energy states of the conduction band of oxide crystals have been developed using the Wannier function technique. The reflection spectra of BeO, SiO2, and Be2SiO4 have been analyzed. The reported calculations of the electronic structure imply the exciton nature of the 9.7-eV reflection peak in the Be2SiO4 crystal. DOI: 10.1134/S1063776111040194
引用
收藏
页码:877 / 883
页数:7
相关论文
共 50 条
  • [21] COMPUTER-SIMULATION OF THE STRUCTURE AND PROPERTIES OF OXIDES OF M2O.2SIO2 TYPE
    BELASHCHENKO, DK
    INORGANIC MATERIALS, 1994, 30 (08) : 966 - 976
  • [22] FORMATION OF CONTACTS IN A PLANARIZED SIO2/SI3N4/SIO2 DIELECTRIC STRUCTURE
    RILEY, PE
    YOUNG, KK
    LIU, CC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) : 2613 - 2617
  • [23] Molecularly dispersed structure and photon adsorption property of TiO2/SiO2 and surface modified TiO2/SiO2 by metal and metal oxides
    Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing University of Technology, Beijing 100022, China
    不详
    不详
    Taiyangneng Xuebao, 2007, 1 (37-42):
  • [24] Improvement of Electrical Performance of HfO2/SiO2/4H-SiC Structure with Thin SiO2
    Hsu, Chia-Ming
    Hwu, Jenn-Gwo
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2013, 2 (08) : N3072 - N3078
  • [25] Time-resolved spectroscopy of complex scintillators Al2BeO4, Be2SiO4 and Al2Be3Si6O18
    Korotaev, AV
    Ivanov, VY
    Pustovarov, VA
    Kruzhalov, AV
    Shulgin, BV
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 486 (1-2): : 417 - 421
  • [26] STRUCTURE OF GLASSES IN THE SYSTEMS MG2SIO4-FE2SIO4, MN2SIO4-FE2SIO4, MG2SIO4-CAMGSIO4, AND MN2SIO4-CAMNSIO4
    COONEY, TF
    SHARMA, SK
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1990, 122 (01) : 10 - 32
  • [27] NEW INTERPRETATION OF ELECTRONIC-STRUCTURE OF SIO2
    YNDURAIN, F
    SOLID STATE COMMUNICATIONS, 1978, 27 (02) : 75 - 80
  • [28] Geometry and electronic structure of (SiO2)3 clusters
    A. V. Petrov
    I. V. Murin
    A. K. Ivanov-Schitz
    Russian Journal of General Chemistry, 2017, 87 : 1456 - 1460
  • [29] Electronic structure of graphene and doping effect on SiO2
    Kang, Yong-Ju
    Kang, Joongoo
    Chang, K. J.
    PHYSICAL REVIEW B, 2008, 78 (11):
  • [30] THE ELECTRONIC-STRUCTURE OF IMPURITIES AND DEFECTS IN SIO2
    PANTELIDES, ST
    THIN SOLID FILMS, 1982, 89 (01) : 103 - 108