Effect of drying environment on mechanical properties, internal RH and pore structure of 3D printed concrete

被引:42
|
作者
Ma, Lei [1 ]
Zhang, Qing [2 ]
Jia, Zijian [1 ]
Liu, Chao [1 ]
Deng, Zhicong [1 ]
Zhang, Yamei [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Construct Mat, Nanjing 211189, Peoples R China
[2] Holcim Innovat Ctr, F-38291 St Quentin Fallavier, France
基金
中国国家自然科学基金;
关键词
3D printing; Drying; Mechanical properties; Pore structure; Internal RH; STRENGTH DEVELOPMENT; HARDENED PROPERTIES; EARLY-AGE; SHRINKAGE; MOISTURE; POROSITY; FRESH; PERFORMANCE; PARAMETERS; COMPOSITE;
D O I
10.1016/j.conbuildmat.2021.125731
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D printed concrete (3DPC) is fabricated by depositing printable materials without formwork which increases the surface exposed to environmental condition, and by default, eliminates the curing procedure. As a result, moisture evaporation from printed concrete mitigates the hydration of cement and impacts the development of the mechanical properties. In this study, the effects of drying (RH = 60%+/- 5%), wind (3 m/s) and exposed area on the mechanical properties of 3DPC at 20 degrees C +/- 5 degrees C were investigated. Furtherly, the internal relative humidity evolvement was measured by humidity sensor and the pore distribution was evaluated by X-ray computed tomography. Curing condition were found to have a significant influence on compressive and flexural strength development for samples cut from printed elements and cast samples, but had less significant effect on splitting tensile strength. Furthermore, compared with cast specimens, samples cut from printed elements were more sensitive to curing condition. Evidence on the pore structure seemed to explain the difference: the pore connectivity increased and the pore distribution varied for samples cut from printed elements. We also confirmed the existence of anisotropy for samples cut from printed elements and found that it did not aggravate in drying and wind conditions.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [31] Mechanical properties of 3D printed polymers
    Yahamed, Azem
    Ikonomov, Pavel
    Fleming, Paul D.
    Pekarovicova, Alexandra
    Gustafson, Peter
    Alden, Arz Qwam
    Alrafeek, Saif
    JOURNAL OF PRINT AND MEDIA TECHNOLOGY RESEARCH, 2016, 5 (04): : 273 - 289
  • [32] Influence of the pore feature on the water uptake in 3D printed concrete
    Zhang, Yu
    Zhang, Yunsheng
    Yang, Lin
    Liu, Guojian
    Du, Hongjian
    MATERIALS LETTERS, 2023, 333
  • [33] Heat Treatment Effect on Mechanical Properties of 3D Printed Polymers
    de Avila, Eduardo
    Eo, Jaeseok
    Kim, Jihye
    Kim, Namsoo P.
    2ND INTERNATIONAL CONFERENCE ON COMPOSITE MATERIAL, POLYMER SCIENCE AND ENGINEERING (CMPSE2018), 2019, 264
  • [34] Effect of processing parameters on mechanical properties of 3D printed samples
    Maloch J.
    Hnátková E.
    Žaludek M.
    Krátký P.
    Materials Science Forum, 2018, 919 : 230 - 235
  • [35] Effect of heat treatment on mechanical properties of 3D printed PLA
    Jayanth, N.
    Jaswanthraj, K.
    Sandeep, S.
    Mallaya, N. Harish
    Siddharth, S. Raghul
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 123
  • [36] Variation of the Adhesion Between Concrete Printed Layers in a 3D Concrete Printed Structure
    Dang, Thi Thuy Hang
    Tran, Van Mien
    Lecture Notes in Civil Engineering, 2366, (971-978):
  • [37] Study on preparation and mechanical properties of 3D printed concrete with different aggregate combinations
    Xiao, Jianzhuang
    Lv, Zhenyuan
    Duan, Zhenhua
    Hou, Shaodan
    JOURNAL OF BUILDING ENGINEERING, 2022, 51
  • [38] Anisotropic mechanical properties of extrusion-based 3D printed layered concrete
    Liu, Chenkang
    Yue, Songlin
    Zhou, Cong
    Sun, Honglei
    Deng, Shuxin
    Gao, Fei
    Tan, Yizhong
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (30) : 16851 - 16864
  • [39] Anisotropic mechanical properties of extrusion-based 3D printed layered concrete
    Chenkang Liu
    Songlin Yue
    Cong Zhou
    Honglei Sun
    Shuxin Deng
    Fei Gao
    Yizhong Tan
    Journal of Materials Science, 2021, 56 : 16851 - 16864
  • [40] Correction: Influence of the printing direction and age on the mechanical properties of 3D printed concrete
    Behzad Zahabizadeh
    João Pereira
    Claúdia Gonçalves
    Eduardo N. B. Pereira
    Vítor M. C. F. Cunha
    Materials and Structures, 2023, 56