Splendid Morita equivalences for principal 2-blocks with dihedral defect groups

被引:8
|
作者
Koshitani, Shigeo [1 ]
Lassueur, Caroline [2 ]
机构
[1] Chiba Univ, Ctr Frontier Sci, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, Japan
[2] TU Kaiserslautern, FB Math, Postfach 3049, Kaiserslautern 67653, Germany
关键词
Puig's finiteness conjecture; Morita equivalence; Splendid Morita equivalence; Stable equivalence of Morita type; Scott module; Brauer indecomposability; Generalised decomposition numbers; Dihedral; 2-group; BRAUER INDECOMPOSABILITY; SCOPES REDUCTION; STABLE EQUIVALENCES; CONJECTURE HOLDS; FUSION SYSTEMS; SCOTT MODULES; BLOCKS; CHARACTERS; ALGEBRAS; COVERS;
D O I
10.1007/s00209-019-02301-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a dihedral 2-group P of order at least 8, we classify the splendid Morita equivalence classes of principal 2-blocks with defect groups isomorphic to P. To this end we construct explicit stable equivalences of Morita type induced by specific Scott modules using Brauer indecomposability and gluing methods; we then determine when these stable equivalences are actually Morita equivalences, and hence automatically splendid Morita equivalences. Finally, we compute the generalised decomposition numbers in each case.
引用
收藏
页码:639 / 666
页数:28
相关论文
共 50 条