Prior Information Aided Deep Learning Method for Grant-Free NOMA in mMTC

被引:14
|
作者
Bai, Yanna [1 ,2 ]
Chen, Wei [1 ,2 ]
Ai, Bo [1 ,3 ,4 ]
Zhong, Zhangdui [1 ,5 ,6 ]
Wassell, Ian J. [7 ]
机构
[1] Beijing Jiaotong Univ BJTU, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
[2] Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China
[3] Peng Cheng Lab, Res Ctr Networks & Commun, Shenzhen 518055, Peoples R China
[4] Zhengzhou Univ, Henan Joint Int Res Lab Intelligent Networking &, Zhengzhou 450001, Peoples R China
[5] Key Lab Railway Ind Broadband Mobile Informat Com, Beijing 100044, Peoples R China
[6] Beijing Engn Res Ctr High Speed Railway Broadband, Beijing 100044, Peoples R China
[7] Univ Cambridge, Comp Lab, Cambridge CB2 1TN, England
基金
北京市自然科学基金;
关键词
Channel estimation; Receivers; NOMA; Multiuser detection; Artificial neural networks; Safety; Rails; Deep learning; massive machine-type communication; massive access; compressive sensing; NONORTHOGONAL MULTIPLE-ACCESS; ACTIVE USER DETECTION; MULTIUSER DETECTION; CHANNEL ESTIMATION; NETWORKS; COMMUNICATION;
D O I
10.1109/JSAC.2021.3126071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In massive machine-type communications (mMTC), the conflict between millions of potential access devices and limited channel freedom leads to a sharp decrease in spectrum efficiency. The nature of sporadic activity in mMTC provides a solution to enhance spectrum efficiency by employing compressive sensing (CS) to perform multiuser detection (MUD). However, CS-MUD suffers from high computation complexity and fails to meet the strict latency requirement in some critical applications. To address this problem, in this paper, we propose a novel deep learning (DL) based framework for grant-free non-orthogonal multiple access (GF-NOMA), where we utilize the information distilled from the initial data recovery phase to further enhance channel estimation, which in turn improves data recovery performance. Besides, we design an interpretable and structured Model-driven Prior Information Aided Network (M-PIAN) and provide theoretical analysis that demonstrates the proposed M-PIAN can converge faster and support more users. Experiments show that the proposed method outperforms existing CS algorithms and DL methods in both computation complexity and reconstruction accuracy.
引用
收藏
页码:112 / 126
页数:15
相关论文
共 50 条
  • [21] Power Level Design-aware Throughput Analysis of Grant-Free Power-Domain NOMA in mMTC
    Hirai, Takeshi
    Oda, Rei
    Wakamiya, Naoki
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 105 - 110
  • [22] Distributed Q-Learning Aided Uplink Grant-Free NOMA for Massive Machine-Type Communications
    Liu, Jiajia
    Shi, Zhenjiang
    Zhang, Shangwei
    Kato, Nei
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2029 - 2041
  • [23] RIS-Assisted Grant-Free NOMA
    Tasci, Recep Akif
    Kilinc, Fatih
    Celik, Abdulkadir
    Abdallah, Asmaa
    Eltawil, Ahmed M.
    Basar, Ertugrul
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4323 - 4328
  • [24] Method of CS-IC Detection in the Grant-Free NOMA System
    Fan, Bin
    Su, Xin
    Zeng, Jie
    Ma, Xin
    Lv, Tiejun
    2018 12TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION AND COMMUNICATION TECHNOLOGY (ISMICT), 2018, : 227 - 231
  • [25] Side-Information Aided Compressed Multi-User Detection for Up-Link Grant-Free NOMA
    Cui, Yupeng
    Xu, Wenbo
    Wang, Yue
    Lin, Jiaru
    Lu, Liyang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (11) : 7720 - 7731
  • [26] Improved Bayesian Learning Detectors for Uplink Grant-Free MIMO-NOMA
    Yang, Boran
    Zhang, Xiaoxu
    Hao, Li
    Karagiannidis, George K.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (12) : 2243 - 2247
  • [27] Bayesian Learning-Based Multiuser Detection for Grant-Free NOMA Systems
    Zhang, Xiaoxu
    Fan, Pingzhi
    Liu, Jiaqi
    Hao, Li
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 6317 - 6328
  • [28] Power-Collision-Based 2-Shot Grant-Free NOMA with Cross-Slot SIC for mMTC
    Hirai, Takeshi
    Izumi, Taisuke
    Wakamiya, Naoki
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 6261 - 6266
  • [29] Uplink Grant-Free NOMA With Sinusoidal Spreading Sequences
    Hasan, Shah Mahdi
    Mahata, Kaushik
    Hyder, Md. Mashud
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (06) : 3757 - 3770
  • [30] DeepMuD: Multi-User Detection for Uplink Grant-Free NOMA IoT Networks via Deep Learning
    Emir, Ahmet
    Kara, Ferdi
    Kaya, Hakan
    Yanikomeroglu, Halim
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (05) : 1133 - 1137