An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage

被引:71
|
作者
Zhou, Shu-Wei [1 ]
Xia, Cai-Chu [1 ,2 ]
Du, Shi-Gui [2 ]
Zhang, Ping-Yang [1 ]
Zhou, Yu [1 ]
机构
[1] Tongji Univ, Dept Geotech Engn, Coll Civil Engn, Shanghai 200092, Peoples R China
[2] Shaoxing Univ, Coll Civil Engn, Shaoxing 312000, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressed air energy storage (CAES); Lined rock cavern; Temperature; Air pressure; Mechanical response; Analytical solution; PERFORMANCE;
D O I
10.1007/s00603-014-0570-4
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.
引用
收藏
页码:749 / 770
页数:22
相关论文
共 50 条
  • [31] Stability analysis of surrounding rock of multi-cavern for compressed air energy storage
    Ji, Wendong
    Wang, Shu
    Wan, Jifang
    Cheng, Shaozhen
    He, Jiaxin
    Shi, Shaohua
    ADVANCES IN GEO-ENERGY RESEARCH, 2024, 13 (03): : 175 - 175
  • [32] Modelling and Dynamic Simulation of an Underground Cavern for Operation in an Innovative Compressed Air Energy Storage Plant
    Nielsen, Lasse
    Leithner, Reinhard
    ENERGY, ENVIRONMENT, ECOSYSTEMS, DEVELOPMENT AND LANDSCAPE ARCHITECTURE, 2009, : 285 - +
  • [33] Temperature and pressure variations in salt compressed air energy storage (CAES) caverns considering the air flow in the underground wellbore
    Han, Yue
    Cui, Hao
    Ma, Hongling
    Chen, Jianlin
    Liu, Ning
    Journal of Energy Storage, 2022, 52
  • [34] Temperature and pressure variations in salt compressed air energy storage (CAES) caverns considering the air flow in the underground wellbore
    Han, Yue
    Cui, Hao
    Ma, Hongling
    Chen, Jianlin
    Liu, Ning
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [35] An accurate bilinear cavern model for compressed air energy storage
    Zhan, Junpeng
    Ansari, Osama Aslam
    Liu, Weijia
    Chung, C. Y.
    APPLIED ENERGY, 2019, 242 : 752 - 768
  • [36] Measurements and analysis of rock mass responses around a pilot lined rock cavern for LNG underground storage
    Lee, Dae-Hyuck
    Lee, Hee-Suk
    Kim, Ho-Yeong
    Gatelier, Nicolas
    EUROCK 2005: IMPACT OF HUMAN ACTIVITY ON THE GEOLOGICAL ENVIRONMENT, 2005, : 287 - 292
  • [37] MECHANICAL ENERGY STORAGE SYSTEMS: COMPRESSED AIR AND UNDERGROUND PUMPED HYDRO.
    Chiu, H.H.
    L.W., Rodgers
    Z.A., Saleem
    R.K., Ahluwalia
    G.T., Kartsounes
    F.W., Ahrens
    Journal of energy, 1979, 3 (03): : 131 - 139
  • [38] ACCUMULATION OF ENERGY BY UNDERGROUND-STORAGE OF COMPRESSED AIR
    NOE, JM
    SOUQUET, G
    ANNALES DES MINES, 1978, 184 (04): : 29 - 34
  • [39] Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations
    Li, Hang
    Ma, Hongling
    Zhao, Kai
    Zhu, Shijie
    Yang, Kun
    Zeng, Zhen
    Zheng, Zhuyan
    Yang, Chunhe
    ENERGY, 2024, 286
  • [40] Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations
    Li, Hang
    Ma, Hongling
    Zhao, Kai
    Zhu, Shijie
    Yang, Kun
    Zeng, Zhen
    Zheng, Zhuyan
    Yang, Chunhe
    Energy, 2024, 286