Hard gap in epitaxial semiconductor-superconductor nanowires

被引:6
|
作者
Chang W. [1 ,2 ]
Albrecht S.M. [1 ]
Jespersen T.S. [1 ]
Kuemmeth F. [1 ]
Krogstrup P. [1 ]
Nygård J. [1 ]
Marcus C.M. [1 ]
机构
[1] Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen
[2] Department of Physics, Harvard University, Cambridge, 02138, MA
基金
新加坡国家研究基金会;
关键词
Indium arsenide - Quantum optics - Hybrid systems - Topology - Electrostatic devices - Nanowires - Narrow band gap semiconductors - Semiconductor devices;
D O I
10.1038/nnano.2014.306
中图分类号
学科分类号
摘要
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunnelling conductance below the superconducting gap, suggesting a continuum of subgap states - a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by the proximity effect in a semiconductor, using epitaxial InAs-Al semiconductor-superconductor nanowires. The hard gap, together with favourable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity. © 2015 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:232 / 236
页数:4
相关论文
共 50 条
  • [41] Skyrmion spin texture in ferromagnetic semiconductor-superconductor heterostructures
    Bjornson, Kristofer
    Black-Schaffer, Annica M.
    [J]. PHYSICAL REVIEW B, 2014, 89 (13)
  • [42] Majorana fermions in a periodically driven semiconductor-superconductor Heterostructure
    Wu, C. C.
    Sun, J.
    Huang, F. J.
    Li, Y. D.
    Liu, W. M.
    [J]. EPL, 2013, 104 (02)
  • [43] Conductance matrix symmetries of multiterminal semiconductor-superconductor devices
    Maiani, Andrea
    Geier, Max
    Flensberg, Karsten
    [J]. PHYSICAL REVIEW B, 2022, 106 (10)
  • [44] Semiconductor-Superconductor Photon Bell-state Analyzer
    Sabag, Evyatar
    Bouscher, Shlomi
    Marjieh, Raja
    Hayat, Alex
    [J]. 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [45] Electron gas refrigeration and thermometry by semiconductor-superconductor junctions
    Prunnila, M
    Ahopelto, J
    Savin, A
    Kivinen, P
    Pekola, J
    [J]. PHYSICS OF SEMICONDUCTORS 2002, PROCEEDINGS, 2003, 171 : 269 - 275
  • [46] A THREE-TERMINAL SEMICONDUCTOR-SUPERCONDUCTOR TRANSIMPEDANCE AMPLIFIER
    Pham, T.
    Leung, M.
    Dalrymple, B.
    Abelson, L.
    Spargo, J.
    Ou, S.
    Chan, H.
    Silver, A.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1993, 3 (01) : 1964 - 1967
  • [47] Angle dependence of Andreev scattering at semiconductor-superconductor interfaces
    Mortensen, NA
    Flensberg, K
    Jauho, AP
    [J]. PHYSICAL REVIEW B, 1999, 59 (15): : 10176 - 10182
  • [48] Proposed Detection of the Topological Phase in Ring-Shaped Semiconductor-Superconductor Nanowires Using Coulomb Blockade Transport
    Zocher, Bjoern
    Horsdal, Mats
    Rosenow, Bernd
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (22)
  • [49] Transmission resonances in a semiconductor-superconductor junction quantum interference structure
    Takagaki, Y
    Tokura, Y
    [J]. PHYSICAL REVIEW B, 1996, 54 (09): : 6587 - 6599
  • [50] SPECTROSCOPY OF MULTIELECTRON CENTERS IN SUPERCONDUCTORS, AT THEIR SURFACES, AND IN SEMICONDUCTOR-SUPERCONDUCTOR HETEROSTRUCTURES
    VOLKOV, BA
    TUGUSHEV, VV
    [J]. JETP LETTERS, 1989, 49 (06) : 384 - 388