Global existence of solutions for a fluid model of a neutron star

被引:0
|
作者
Zhang, Jianlin [1 ,2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Zhongyuan Univ Technol, Coll Sci, Dept Appl Math, Zhengzhou 450007, Peoples R China
来源
关键词
neutron star; spherical case; global existence; regularity; NAVIER-STOKES EQUATIONS; LARGE-TIME BEHAVIOR; SPHERICALLY SYMMETRIC-SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; COMPRESSIBLE VISCOUS-FLUID; ONE-DIMENSIONAL EQUATIONS; POLYTROPIC IDEAL-GAS; ASYMPTOTIC-BEHAVIOR; FLOWS; STABILITY;
D O I
10.1186/s13661-016-0628-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an initial-boundary value problem for the equations of a fluid spherical model of neutron star considered by Lattimer et al. We establish the global existence and regularity of the spherically symmetric solutions in H-i (i = 1, 2, 4) of this fluid model. These results improve and generalize the results of Ducomet and Necasova (Ann. Univ. Ferrara 55(1):153-193, 2009).
引用
收藏
页数:19
相关论文
共 50 条